AI的不斷應用發展使得傳統的人工工作的弊端得到了很好的彌補。比如在圖像標注這個領域,傳統的標注需要招聘大量的人員,并且標注圖像所耗費的時間精力也是不可估量的,而AI模型的出現讓這一切都成為過去。利用慧視光電打造的深度學習算法開發平臺SpeedDP,就能夠針對場景識別進行特有的模型部署訓練,通過大量的訓練,讓AI學會自動標注圖像。平臺采用標準的AI算法開發流程,通過從需求分析、數據制作到模型訓練、測試驗證以及模型部署幾個主要模塊。SpeedDP用于模型訓練和評估測試的數據集是由一系列的圖像和標注文件組成的,平臺支持多種開源數據格式如VOC和COCO。而目前平臺共支持yolox系列和yolov8系列模型用于模型訓練(分割任務*支持yolov8模型),通過不斷額測試驗證,就能夠讓AI實現海思、RockChip嵌入式硬件平臺等模型部署的可視化AI開發功能。特殊目標的識別精度如何提高?貴州慧視光電AI智能圖像處理
無人機在高速公路巡檢中的作用越來越突出,特別是在十一黃金周這樣的出行高峰,高速公路的安全和暢通至關重要。傳統的巡檢模式受到人力物力以及時空的限制,弊端很大,難以實現精細大面積的監控疏導。無人機靈活機動的特點則能夠很好的彌補時空的局限,而想要進一步減少人力物力的付出,則需要打造智能化的無人機,通過AI賦能,讓無人機更加聰明。打造智能化無人機可以在無人機吊艙的基礎上加裝高性能的AI圖像處理設備,成都慧視開發的Viztra-HE030圖像處理板憑借6.0TOPS的算力,用在十一黃金周這樣的出行高峰期就能夠很好地勝任工作,板卡采用了國產化芯片RK3588,在算法的賦能下,能夠實現高效巡檢。重慶智慧消防AI智能解決方案哪些平臺適合訓練算法?
多目標跟蹤是指在連續的圖像中,通過目標檢測算法識別出每一幀中的目標,并在時間上跟蹤它們的位置和狀態。但目標會不斷發生尺度、形變、遮擋等變化,而且還會有目標出現和消失的情況,再加上視頻采集端的相機所處環境可能受到外界影響導致抖動的情況(例如無人機高空檢測),就會給多目標跟蹤造成一定的困難。由于我們不能控制目標,所以只能從視頻采集端維護跟蹤的穩定性。因此,成都慧視針對于多目標檢測跟蹤抖動丟失的優化方法是:1.改進目標檢測,使用更加魯棒的目標檢測算法。2.增強特征描述,利用深度學習提取更高級別的語義特征,這些特征對于小范圍內的視角變化具有更好的不變性3.改進運動模型,在算法中加入對攝像頭運動的估計,通過補償攝像頭運動來減小目標真實運動與預測之間的差距。4.數據關聯策略,設計更靈活的數據關聯算法,允許更大的距離閾值來匹配候選目標。
識別算法的性能提升依靠大量的圖像標注,傳統模式下,需要人工對同一識別目標的數據集進行一步一步手動拉框,但是這個過程的痛苦只有做過的人才知道。越多素材的數據集對于算法的提升越有幫助,常規情況下,一個20秒時長30幀的視頻就多達兩三百張畫面需要標注,如果視頻時長或者視頻的幀速率增加,需要標注的幀畫面將會更多。小編曾試過標注一個時長為1分30秒幀速率為60的視頻,需要標注的畫面竟然多達5000多張,當我標注到500張的時候,整個人都已經麻木,并且出現情緒波動,望著剩下的4500多張待標注畫面,看著都頭皮發麻,怎么都不想繼續了。如何提升小型飛行器識別跟蹤的精度?
城市濕地公園是“城市之肺”,是生態建設的重要一環,因此對于濕地公園的日常巡邏必不可少。但是大面積的濕地公園地形復雜交錯,許多區域依靠傳統的人工巡邏,無法到達。此外,人工巡邏的效率遠遠不夠,無法做到及時響應和精確記錄,久而久之,成本就不斷累計增加。無人機的落地應用,能夠有效減少人工成本的問題。無人機能夠憑借小巧的身型,在濕地錯綜復雜的環境中自由穿梭,確保無死角。利用無人機打造智能巡檢系統,通過高清攝像頭抵近觀察,能夠實現濕地全域的高效巡檢。其中,智能化的措施在于可以在攝像頭的基礎上加裝圖像處理板,通過圖像處理板和算法的共同作用,能夠讓無人機攝像頭變成“智慧眼”,這只“智慧眼”能夠精細AI識別動物、樹木、水中的雜物等等信息,通過大量的數據收集,為管理決策提供依據。節約圖像標注的時間就是節約成本。貴州開發AI智能目標跟蹤
利用成都慧視推出的SpeedDP能夠幫助訓練AI算法。貴州慧視光電AI智能圖像處理
騰訊開發的機器人小五,采用輪、腿、足復合設計,使得它具備越障能力的同時,也保持了輪式機器人的運行效率。每條腿都可以單獨伸長縮短,能有效提升承載能力。裝上了雙編碼器大扭矩密度的執行器后,就能承受住一般成年人的重量。將機器人用于養老服務領域,能夠幫老人取快遞,抱老人起床,帶老人進行活動。機器人內置RGBD相機,在圖像處理板的賦能下,能夠實時檢測周邊環境,進行路線規劃和避障,以高效完成各項工作指令。同時能夠對物體進行AI識別,判斷老人位置、行為動作,為老人的行動做出幫助。貴州慧視光電AI智能圖像處理