2010年以前,目標跟蹤領域大部分采用一些經典的跟蹤方法,比如Meanshift、Particle Filter和Kalman Filter,以及基于特征點的光流算法等。Meanshift方法是一種基于概率密度分布的跟蹤方法,使目標的搜索一直沿著概率梯度上升的方向,迭代收斂到概率密度分布的局部峰值上。首先Meanshift會對目標進行建模,比如利用目標的顏色分布來描述目標,然后計算目標在下一幀圖像上的概率分布,從而迭代得到局部密集的區域。Meanshift適用于目標的色彩模型和背景差異比較大的情形,早期也用于人臉跟蹤。由于Meanshift方法的快速計算,它的很多改進方法也一直適用至今。慧視RV1126圖像處理板能實現24小時、無間隙信息化監控。人防目標跟蹤互惠互利
進入冬季,北方各地陸續出現冰凍天氣,給不少地方的保供電工作增添了難度。目前,大多數地方都采用無人機巡檢的模式,但是面臨如此寒凍的天氣,無人機也可能會“懈怠”。但是大面積覆冰的影響下,人工巡檢又很難到達很多區域,所以還是不得不依靠無人機,只是需要性能更加強悍的無人機。無人機電力巡檢依靠可見光或者紅外兩種方式進行自動巡視檢測,這其中,用于進行圖像處理的傳感器性能尤其重要。面臨如此寒冷的天氣,圖像處理板能否正常工作十分關鍵,因此選對圖像處理板,關系整個寒冬的電力巡檢。工業目標跟蹤有什么AI算法賦能下的圖像處理板能夠進行智能目標識別。
目標跟蹤算法具有不同的分類標準,可根據檢測圖像序列的性質分為可見光圖像跟蹤和紅外圖像跟蹤;又可根據運動場景對象分為靜止背景目標跟蹤和運動背景下的目標跟蹤。由于基于區域的目標跟蹤算法用的是目標的全局信息,比如灰度、色彩、紋理等。因此當目標未被遮擋時,跟蹤精度非常高、跟蹤非常穩定,對于跟蹤小目標效果很好,可信度高。但是在灰度級的圖像上進行匹配和全圖搜索,計算量較大,非常費時間,所以在實際應用中實用性不強;其次,算法要求目標不能有太大的遮擋及其形變,否則會導致匹配精度下降,造成運動目標的丟失。
由于侵入的目標的形狀和顏色等特征是難以固定的,再加上監控的場景,即背景往往比較復雜,只利用一個單幀圖像就找出移動的目標是非常困難的。然而,目標的運動導致了其運動時間內,監控場景圖像的連續變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監控系統通常監控的視野比較大,系統設置的環境較為惡劣,圖像傳輸的距離較遠,從而導致圖像的信噪比不高,因此采用突出目標的方法,需要在配準的前提下進行多幀能量積累和噪聲抑制。在該技術中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關系是什么關系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數關系,是尤其需要研究的。在研究中,研究如何差,如何自動得到差圖像的分割門限,如何減小背景和突出目標是研究的方向。慧視RK3588圖像跟蹤板支持目標跟蹤識別目標(人、車)。
視覺跟蹤技術是計算機視覺領域(人工智能分支)的一個重要課題,有著重要的研究意義;且在導彈制導、視頻監控、機器人視覺導航、人機交互、以及醫療診斷等許多方面有著廣泛的應用前景。隨著研究人員不斷地深入研究,視覺目標跟蹤在近十幾年里有了突破性的進展,使得視覺跟蹤算法不只是局限于傳統的機器學習方法,更是結合了近些年人工智能熱潮—深度學習(神經網絡)和相關濾波器等方法,并取得了魯棒(robust)、精確、穩定的結果。成都RK3588智能跟蹤板提供商。光纖數據目標跟蹤哪里好
圖像識別跟蹤可以在有些領域代替人員實現24小時不間斷監測!人防目標跟蹤互惠互利
RK3588作為瑞芯微旗艦級芯片,工業級的算力受到了很多領域的青睞,但是由于前端相機的選擇不同,并不是每塊RK3588的圖像處理板都可以直接拿來使用,需要的是根據相機接口和應用場景進行深度定制。成都慧視光電技術有限公司就有這樣的快速集成定制的能力。作為擁有多年圖像處理板開發經驗的團隊,成都慧視能夠快速定制SDI、CVBS、CAMERALINK、USB、LVDS、DVP等豐富接口的RK3588系列圖像處理板,并能夠根據應用環境定制外殼、散熱器等。人防目標跟蹤互惠互利