語音識別服務具備識別準確率高、接入便捷、性能穩定等特點。語音識別服務開放實時語音識別、一句話識別和錄音文件識別三種服務形式,滿足不同類型開發者需求。語音識別功能采用百度語音識別庫,首先利用PyAudio庫錄制語音指令,保存為受支持的wav音頻文件,然后利用百度語音識別庫提供的方法實現語音識別,檢測識別結果,利用PyUserInput庫提供的方法模擬控制web頁面滾動。百度語音識別為開發者提供業界的語音服務,通過場景識別優化,為車載導航,智能家居和社交聊天等行業提供語音解決方案,準確率達到90%以上,讓您的應用繪“聲”繪色。實時語音識別應用場景有哪些?1、實時客服記錄將呼叫中心的語音實時轉寫到文字,可以實現實時質檢和監控2、會議訪談記錄將會議和訪談的音頻實時轉為文字,提升記錄效率,方便企業后期對會議內容進行整理3、視頻實時直播字幕將視頻或線上直播中的音頻實時轉為字幕,為觀眾提高直播觀感體驗。語音識別應用包括語音用戶界面,例如語音撥號、呼叫路由、多用戶設備控制、搜索、簡單的數據輸入等。福建語音識別率
feed-forwardsequentialmemorynetwork,FSMN),在DNN的隱層旁增加了一個“記憶模塊”,這個記憶模塊用來存儲對判斷當前語音幀有用的語音信號的歷史信息和未來信息,并且只需等待有限長度的未來語音幀。隨后,科大訊飛進一步提出了深度全序列卷積神經網絡(DFCNN)。2018年,阿里巴巴改良并開源了語音識別模型DFSMN(DeepFSMN)。2018年,中科院自動化所率先把Transformer應用到語音識別任務,并進一步拓展到中文語音識別。不管是在研究成果還是在產品性能體驗上,國內的語音行業整體水平已經達到甚至超越了國際水平。2016年10月,時任百度首席科學家的吳恩達在對微軟的語音識別技術與人類水平持平的消息表示祝賀的同時聲稱,百度的漢語語音識別在2015年就已經超越了人類的平均水平,也就是說百度比微軟提前一年實現了這一成績。當前語音識別系統依然面臨著不少應用挑戰,其中包括以下主要問題:魯棒性。目前語音識別準確率超過人類水平主要還是在受限的場景下,比如在安靜環境的情況下,而一旦加入干擾信號,尤其是環境噪聲和人聲干擾,性能往往會明顯下降。因此,如何在復雜場景(包括非平穩噪聲、混響、遠場)下,提高語音識別的魯棒性,研發"能用=>好用"的語音識別產品。新疆語音識別工具語料的標注需要長期的積累和沉淀,大規模語料資源的積累需要被提高到戰略高度。
共振峰的位置、帶寬和幅度決定元音音色,改變聲道形狀可改變共振峰,改變音色。語音可分為濁音和清音,其中濁音是由聲帶振動并激勵聲道而得到的語音,清音是由氣流高速沖過某處收縮的聲道所產生的語音。語音的產生過程可進一步抽象成如圖1-2所示的激勵模型,包含激勵源和聲道部分。在激勵源部分,沖擊序列發生器以基音周期產生周期性信號,經過聲帶振動,相當于經過聲門波模型,肺部氣流大小相當于振幅;隨機噪聲發生器產生非周期信號。聲道模型模擬口腔、鼻腔等聲道qi官,后產生語音信號。我們要發濁音時,聲帶振動形成準周期的沖擊序列。發清音時,聲帶松弛,相當于發出一個隨機噪聲。圖1-2產生語音的激勵模型,人耳是聲音的感知qi官,分為外耳、中耳和內耳三部分。外耳的作用包括聲源的定位和聲音的放大。外耳包含耳翼和外耳道,耳翼的作用是保護耳孔,并具有定向作用。外耳道同其他管道一樣也有共振頻率,大約是3400Hz。鼓膜位于外耳道內端,聲音的振動通過鼓膜傳到內耳。中耳由三塊聽小骨組成,作用包括放大聲壓和保護內耳。中耳通過咽鼓管與鼻腔相通,其作用是調節中耳壓力。內耳的耳蝸實現聲振動到神經沖動的轉換,并傳遞到大腦。
它相對于GMM-HMM系統并沒有什么優勢可言,研究人員還是更傾向于基于統計模型的方法。在20世紀80年代還有一個值得一提的事件,美國3eec6ee2-7378-4724-83b5-9b技術署(NIST)在1987年di一次舉辦了NIST評測,這項評測在后來成為了全球語音評測。20世紀90年代,語音識別進入了一個技術相對成熟的時期,主流的GMM-HMM框架得到了更廣的應用,在領域中的地位越發穩固。聲學模型的說話人自適應(SpeakerAdaptation)方法和區分性訓練(DiscriminativeTraining)準則的提出,進一步提升了語音識別系統的性能。1994年提出的大后驗概率估計(MaximumAPosterioriEstimation,MAP)和1995年提出的*大似然線性回歸(MaximumLikelihoodLinearRegression,MLLR),幫助HMM實現了說話人自適應。*大互信息量(MaximumMutualInformation,MMI)和*小分類錯誤(MinimumClassificationError,MCE)等聲學模型的區分性訓練準則相繼被提出,使用這些區分性準則去更新GMM-HMM的模型參數,可以讓模型的性能得到提升。此外,人們開始使用以音素字詞單元作為基本單元。一些支持大詞匯量的語音識別系統被陸續開發出來,這些系統不但可以做到支持大詞匯量非特定人連續語音識別。近年來,該領域受益于深度學習和大數據技術的進步。
另一方面,與業界對語音識別的期望過高有關,實際上語音識別與鍵盤、鼠標或觸摸屏等應是融合關系,而非替代關系。深度學習技術自2009年興起之后,已經取得了長足進步。語音識別的精度和速度取決于實際應用環境,但在安靜環境、標準口音、常見詞匯場景下的語音識別率已經超過95%,意味著具備了與人類相仿的語言識別能力,而這也是語音識別技術當前發展比較火熱的原因。隨著技術的發展,現在口音、方言、噪聲等場景下的語音識別也達到了可用狀態,特別是遠場語音識別已經隨著智能音箱的興起成為全球消費電子領域應用為成功的技術之一。由于語音交互提供了更自然、更便利、更高效的溝通形式,語音必定將成為未來主要的人機互動接口之一。當然,當前技術還存在很多不足,如對于強噪聲、超遠場、強干擾、多語種、大詞匯等場景下的語音識別還需要很大的提升;另外,多人語音識別和離線語音識別也是當前需要重點解決的問題。雖然語音識別還無法做到無限制領域、無限制人群的應用,但是至少從應用實踐中我們看到了一些希望。本篇文章將從技術和產業兩個角度來回顧一下語音識別發展的歷程和現狀,并分析一些未來趨勢,希望能幫助更多年輕技術人員了解語音行業。
語音識別另外兩個技術部分:語言模型和解碼器,目前來看并沒有太大的技術變化。福建語音識別率
伴隨著語音識別系統走向實用化,語音識別在細化模型的設計、參數提取和優化、系統的自適應方面取得進展。福建語音識別率
將相似度高的模式所屬的類別作為識別中間候選結果輸出。為了提高識別的正確率,在后處理模塊中對上述得到的候選識別結果繼續處理,包括通過Lattice重打分融合更高元的語言模型、通過置信度度量得到識別結果的可靠程度等。終通過增加約束,得到更可靠的識別結果。語音識別的技術有哪些?語音識別技術=早期基于信號處理和模式識別+機器學習+深度學習+數值分析+高性能計算+自然語言處理語音識別技術的發展可以說是有一定的歷史背景,上世紀80年代,語音識別研究的重點已經開始逐漸轉向大詞匯量、非特定人連續語音識別。到了90年代以后,語音識別并沒有什么重大突破,直到大數據與深度神經網絡時代的到來,語音識別技術才取得了突飛猛進的進展。語音識別技術的發展語音識別技術起始于20世紀50年代。這一時期,語音識別的研究主要集中在對元音、輔音、數字以及孤立詞的識別。20世紀60年代,語音識別研究取得實質性進展。線性預測分析和動態規劃的提出較好地解決了語音信號模型的產生和語音信號不等長兩個問題,并通過語音信號的線性預測編碼,有效地解決了語音信號的特征提取。20世紀70年代,語音識別技術取得突破性進展。基于動態規劃的動態時間規整(DynamicTimeWarp?ing。福建語音識別率