**小化對數損失基本等價于**大化分類器的準確度,對于完美的分類器,對數損失值為0。對數損失函數的計算公式如下:其中,y為輸出變量即輸出的測試樣本的檢測結果,x為輸入變量即測試樣本,l為損失函數,n為測試樣本(待檢測軟件的二進制可執行文件)數目,yij...
optimizer)采用的是adagrad,batch_size是40。深度神經網絡模型訓練基本都是基于梯度下降的,尋找函數值下降速度**快的方向,沿著下降方向迭代,迅速到達局部**優解的過程就是梯度下降的過程。使用訓練集中的全部樣本訓練一次就是一個e...
所以第三方軟件檢測機構可以說是使用loadrunner軟件工具較多的一個業務領域,也能保證軟件測試報告結果的性能準確。二、軟件測試漏洞掃描工具在客戶需要的軟件測試報告中,軟件安全的滲透測試和漏洞掃描一般會作為信息安全性的軟件測試報告內容。首先來說一下漏...
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規范化前端融合模型的檢測混淆矩陣示意圖。圖9...
置環境操作系統+服務器+數據庫+軟件依賴5執行用例6回歸測試及缺陷**7輸出測試報告8測試結束軟件架構BSbrowser瀏覽器+server服務器CSclient客戶端+server服務器1標準上BS是在服務器和瀏覽器都存在的基礎上開發2效率BS中負擔...
先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征,提取得到當前軟件樣本的二進制可執行文件的字節碼n-grams的特征表示。生成軟件樣本的dll和api...
后端融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖13所示,規范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構如圖16所示,中間融合方式用深度神經網絡從三種...
比黑盒適用性廣的優勢就凸顯出來了。[5]軟件測試方法手動測試和自動化測試自動化測試,顧名思義就是軟件測試的自動化,即在預先設定的條件下運行被測程序,并分析運行結果??偟膩碚f,這種測試方法就是將以人驅動的測試行為轉化為機器執行的一種過程。對于手動測試,其...
12)把節裝入到vmm的地址空間;(13)可選頭部的sizeofcode域取值不正確;(14)含有可疑標志。此外,惡意軟件和良性軟件間以下格式特征也存在明顯的統計差異:(1)證書表是軟件廠商的可認證的聲明,惡意軟件很少有證書表,而良性軟件大部分都有軟件...
這種傳統方式幾乎不能檢測未知的新的惡意軟件種類,能檢測的已知惡意軟件經過簡單加殼或混淆后又不能檢測,且使用多態變形技術的惡意軟件在傳播過程中不斷隨機的改變著二進制文件內容,沒有固定的特征,使用該方法也不能檢測。新出現的惡意軟件,特別是zero-day惡...
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規范化前端融合模型的檢測混淆矩陣示意圖。圖9...
針對cma和cnas第三方軟件測試機構的資質,客戶在確定合作前需要同時確認資質的有效期,因為軟件測試資質都是有一定有效期的,如果軟件測試公司在業務開展的過程中有違規或者不受認可的操作和行為,有可能會被吊銷資質執照,這一點需要特別注意。第三,軟件測試機構...
所述生成軟件樣本的dll和api信息特征視圖,是先統計所有類別已知的軟件樣本的pe可執行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節里是否存在選擇出的某個引用頻率**高的dll和api信息...
這樣做的好處是,融合模型的錯誤來自不同的分類器,而來自不同分類器的錯誤往往互不相關、互不影響,不會造成錯誤的進一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規則融合(bayes...
每一種信息的來源或者形式,都可以稱為一種模態。例如,人有觸覺,聽覺,視覺,嗅覺。多模態機器學習旨在通過機器學習的方法實現處理和理解多源模態信息的能力。多模態學習從1970年代起步,經歷了幾個發展階段,在2010年后***步入深度學習(deeplearn...
比黑盒適用性廣的優勢就凸顯出來了。[5]軟件測試方法手動測試和自動化測試自動化測試,顧名思義就是軟件測試的自動化,即在預先設定的條件下運行被測程序,并分析運行結果。總的來說,這種測試方法就是將以人驅動的測試行為轉化為機器執行的一種過程。對于手動測試,其...
4)建立與用戶或客戶的聯系,收集他們對測試的需求和建議。(II)制訂技術培訓計劃為高效率地完成好測試工作,測試人員必須經過適當的培訓。制訂技術培訓規劃有3個子目標:1)制訂**的培訓計劃,并在管理上提供包括經費在內的支持。2)制訂培訓目標和具體的培訓計...
3)pe可選頭部有效尺寸的值不正確,(4)節之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節名稱,(7)可疑的頭部***,(8)來自,(9)導入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,(12)把節裝入到vmm的地址空間,...
在不知道多長的子序列能更好的表示可執行文件的情況下,只能以固定窗口大小在字節碼序列中滑動,產生大量的短序列,由機器學習方法選擇可能區分惡意軟件和良性軟件的短序列作為特征,產生短序列的方法叫n-grams?!?80074ff13b2”的字節碼序列,如果以...
4)建立與用戶或客戶的聯系,收集他們對測試的需求和建議。(II)制訂技術培訓計劃為高效率地完成好測試工作,測試人員必須經過適當的培訓。制訂技術培訓規劃有3個子目標:1)制訂**的培訓計劃,并在管理上提供包括經費在內的支持。2)制訂培訓目標和具體的培訓計...
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件...
沒有滿足用戶的需求1未達到需求規格說明書表明的功能2出現了需求規格說明書指明不會出現的錯誤3軟件功能超出了需求規格說明書指明的范圍4軟件質量不夠高維護性移植性效率性可靠性易用性功能性健壯性等5軟件未達到軟件需求規格說明書未指出但是應該達到的目標計算器沒...
2)軟件產品登記測試流程材料準備并遞交------實驗室受理------環境準備------測試實施------輸出報告------通知客戶------繳費并取報告服務區域北京、上海、廣州、深圳、重慶、杭州、南京、蘇州等**各地軟件測試報告|軟件檢測報...
后端融合模型的10折交叉驗證的準確率是%,對數損失是,混淆矩陣如圖13所示,規范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構如圖16所示,中間融合方式用深度神經網絡從三種...
步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,基于多模態數據融合方法,將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖輸入深度神經網絡,訓練多模態深度集成模型;步驟s3、將軟件樣本中的類別未知的軟件樣本...
3)pe可選頭部有效尺寸的值不正確,(4)節之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節名稱,(7)可疑的頭部***,(8)來自,(9)導入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,(12)把節裝入到vmm的地址空間,...
先將當前軟件樣本件的二進制可執行文件轉換為十六進制字節碼序列,然后采用n-grams方法在十六進制字節碼序列中滑動,產生大量的連續部分重疊的短序列特征,提取得到當前軟件樣本的二進制可執行文件的字節碼n-grams的特征表示。生成軟件樣本的dll和api...
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件...
什么是軟件測試通過手工和自動化工具對被測對象進行檢測,驗證實際結果和預期結果之間的差異。軟件測試的原則1測試是為了證明軟件存在缺陷2測試應該盡早介入3注意測試缺陷的群集效應80-204殺蟲劑現象5合法數據和不合法數據和邊界值,網絡異常和電源斷電等6回歸...
什么是軟件測試通過手工和自動化工具對被測對象進行檢測,驗證實際結果和預期結果之間的差異。軟件測試的原則1測試是為了證明軟件存在缺陷2測試應該盡早介入3注意測試缺陷的群集效應80-204殺蟲劑現象5合法數據和不合法數據和邊界值,網絡異常和電源斷電等6回歸...