所述生成軟件樣本的dll和api信息特征視圖,是先統計所有類別已知的軟件樣本的pe可執行文件引用的dll和api信息,從中選取引用頻率**高的多個dll和api信息;然后判斷當前的軟件樣本的導入節里是否存在選擇出的某個引用頻率**高的dll和api信息,如存在,則將當前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對當前軟件樣本的所有dll和api信息進行表示形成當前軟件樣本的dll和api信息特征視圖。進一步的,所述生成軟件樣本的格式信息特征視圖,是從當前軟件樣本的pe格式結構信息中選取可能區分惡意軟件和良性軟件的pe格式結構特征,形成當前軟件樣本的格式信息特征視圖。進一步的,所述從當前軟件樣本的pe格式結構信息中選取可能區分惡意軟件和良性軟件的pe格式結構特征,是從當前軟件樣本的pe格式結構信息中確定存在特定格式異常的pe格式結構特征以及存在明顯的統計差異的格式結構特征;所述特定格式異常包括:(1)代碼從**后一節開始執行,(2)節頭部可疑的屬性,(3)pe可選頭部有效尺寸的值不正確,(4)節之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節名稱,(7)可疑的頭部***,(8)來自,(9)導入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,。安全掃描確認軟件通過ISO 27001標準,無高危漏洞記錄。深圳軟件測評單位
置環境操作系統+服務器+數據庫+軟件依賴5執行用例6回歸測試及缺陷**7輸出測試報告8測試結束軟件架構BSbrowser瀏覽器+server服務器CSclient客戶端+server服務器1標準上BS是在服務器和瀏覽器都存在的基礎上開發2效率BS中負擔在服務器上CS中的客戶端會分擔,CS效率更高3安全BS數據依靠http協議進行明文輸出不安全4升級上bs更簡便5開發成本bs更簡單cs需要客戶端安卓和ios軟件開發模型瀑布模型1需求分析2功能設計3編寫代碼4功能實現切入點5軟件測試需求變更6完成7上線維護是一種線性模型的一種,是其他開發模型的基礎測試的切入點要留下足夠的時間可能導致測試不充分,上線后才暴露***開發的各個階段比較清晰需求調查適合需求穩定的產品開發當前一階段完成后,您只需要去關注后續階段可在迭代模型中應用瀑布模型可以節省大量的時間和金錢缺點1)各個階段的劃分完全固定,階段之間產生大量的文檔,極大地增加了工作量。2)由于開發模型是線性的,用戶只有等到整個過程的末期才能見到開發成果,從而增加了開發風險。3)通過過多的強制完成日期和里程碑來**各個項目階段。4)瀑布模型的突出缺點是不適應用戶需求的變化瀑布模型強調文檔的作用,并要求每個階段都要仔細驗證。一次滲透測試多少錢艾策科技案例研究:某跨國企業的數字化轉型實踐。
第三方軟件檢測機構在開展第三方軟件測試的過程中,需要保持測試整體的嚴謹性,也需要對測試結果負責并確保公平公正性。所以,在測試過程中,軟件測試所使用的測試工具也是很重要的一方面。我們簡單介紹一下在軟件檢測過程中使用的那些軟件測試工具。眾所周知,軟件測試的參數項目包括功能性、性能、安全性等參數,而其中出具軟件測試報告主要的就是性能測試和安全測試所需要使用到的工具了。一、軟件測試性能測試工具這個參數的測試工具有loadrunner,jmeter兩大主要工具,國產化性能測試軟件目前市場并未有比較大的突破,其中loadrunner是商業軟件測試工具,jmeter為開源社區版本的性能測試工具。從第三方軟件檢測機構的角度上來說,是不太建議使用開源測試工具的。首先,開源測試工具并不能確保結果的準確性,雖然技術層面上來說都可以進行測試,但是因為開源更多的需要考量軟件測試人員的測試技術如何進行使用,涉及到了人為因素的影響,一般第三方軟件檢測機構都會使用loadrunner作為性能測試的工具來進行使用。而loadrunner被加拿大的一家公司收購以后,在整個中國市場區域的銷售和營銷都以第三方軟件檢測機構為基礎來開展工作。
此外格式結構信息具有明顯的語義信息,但基于格式結構信息的檢測方法沒有提取決定軟件行為的代碼節和數據節信息作為特征。某一種類型的特征都從不同的視角反映刻畫了可執行文件的一些性質,字節碼n-grams、dll和api信息、格式結構信息都部分捕捉到了惡意軟件和良性軟件間的可區分信息,但都存在著一定的局限性,不能充分、綜合、整體的表示可執行文件的本質,使得檢測結果準確率不高、可靠性低、泛化性和魯棒性不佳。此外,惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測。技術實現要素:本發明實施例的目的在于提供一種基于多模態深度學習的惡意軟件檢測方法,以解決現有采用二進制可執行文件的單一特征類型進行惡意軟件檢測的檢測方法檢測準確率不高、檢測可靠性低、泛化性和魯棒性不佳的問題,以及其難以檢測出偽造良性軟件特征的惡意軟件的問題。本發明實施例所采用的技術方案是,基于多模態深度學習的惡意軟件檢測方法,按照以下步驟進行:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖。代碼質量評估顯示注釋覆蓋率不足30%需加強。
幫助客戶提升內部技術團隊能力。例如,某三甲醫院在采用艾策科技的醫療信息化系統檢測方案后,不僅系統漏洞率下降45%,其IT團隊的安全意識與應急響應能力也提升。技術創新未來方向艾策科技創始人兼CTO表示:“作為軟件檢測公司,我們始終將技術創新視為競爭力。未來,公司將重點投入AI算法優化、邊緣計算檢測等前沿領域,為電力能源、政企單位等行業提供更高效、更智能的質量保障服務。”深圳艾策信息科技有限公司是一家立足于粵港澳大灣區,依托信息技術產業,面向全國客戶提供專業、可靠服務的第三方CMACNAS檢測機構。在檢測服務過程中,公司始終堅持以客戶需求為本,秉承公平公正的第三方檢測要求,遵循國家檢測標準規范,確保檢測數據和結果準確可靠,運用前沿A人工智能技術提高檢測效率。我們追求創造優異的社會價值,我們致力于打造公司成為第三方檢測行業的行業榜樣。負載測試證實系統最大承載量較宣傳數據低18%。第三方軟件驗收評測報告
隱私合規檢測確認用戶數據加密符合GDPR標準要求。深圳軟件測評單位
3)pe可選頭部有效尺寸的值不正確,(4)節之間的“間縫”,(5)可疑的代碼重定向,(6)可疑的代碼節名稱,(7)可疑的頭部***,(8)來自,(9)導入地址表被修改,(10)多個pe頭部,(11)可疑的重定位信息,(12)把節裝入到vmm的地址空間,(13)可選頭部的sizeofcode域取值不正確,(14)含有可疑標志。存在明顯的統計差異的格式結構特征包括:(1)無證書表;(2)調試數據明顯小于正常文件,(3).text、.rsrc、.reloc和.rdata的characteristics屬性異常,(4)資源節的資源個數少于正常文件。生成軟件樣本的字節碼n-grams特征視圖,是統計了每個短序列特征的詞頻(termfrequency,tf),即該短序列特征在軟件樣本中出現的頻率。先從當前軟件樣本的所有短序列特征中選取詞頻tf**高的多個短序列特征;然后計算選取的每個短序列特征的逆向文件頻率idf與詞頻tf的乘積,并將其作為選取的每個短序列特征的特征值,,表示該短序列特征表示其所在軟件樣本的能力越強;**后在選取的詞頻tf**高的多個短序列特征中選取,生成字節碼n-grams特征視圖。:=tf×idf;tf(termfrequency)是詞頻,定義如下:其中,ni,j是短序列特征i在軟件樣本j中出現的次數,∑knk,j指軟件樣本j中所有短序列特征出現的次數之和。深圳軟件測評單位