先將訓練樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖分別輸入至一個深度神經網絡中抽取高等特征表示,然后合并抽取的高等特征表示并將其作為下一個深度神經網絡的輸入進行模型訓練,得到多模態深度集成模型。進一步的,所述多模態深度集成模型的隱藏層的***函數采用relu,輸出層的***函數采用sigmoid,中間使用dropout層進行正則化,優化器采用adagrad。進一步的,所述訓練得到的多模態深度集成模型中,用于抽取dll和api信息特征視圖的深度神經網絡包含3個隱含層,且3個隱含層中間間隔設置有dropout層;用于抽取格式信息特征視圖的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;用于抽取字節碼n-grams特征視圖的深度神經網絡包含4個隱含層,且4個隱含層中間間隔設置有dropout層;用于輸入合并抽取的高等特征表示的深度神經網絡包含2個隱含層,且2個隱含層中間設置有dropout層;所述dropout層的dropout率均等于。本發明實施例的有益效果是,提出了一種基于多模態深度學習的惡意軟件檢測方法,應用了多模態深度學習方法來融合dll和api、格式結構信息、字節碼n-grams特征。2025 年 IT 趨勢展望:深圳艾策的五大技術突破。軟件功能性測評報告價格
每一種信息的來源或者形式,都可以稱為一種模態。例如,人有觸覺,聽覺,視覺,嗅覺。多模態機器學習旨在通過機器學習的方法實現處理和理解多源模態信息的能力。多模態學習從1970年代起步,經歷了幾個發展階段,在2010年后***步入深度學習(deeplearning)階段。在某種意義上,深度學習可以被看作是允許我們“混合和匹配”不同模型以創建復雜的深度多模態模型。目前,多模態數據融合主要有三種融合方式:前端融合(early-fusion)即數據水平融合(data-levelfusion)、后端融合(late-fusion)即決策水平融合(decision-levelfusion)以及中間融合(intermediate-fusion)。前端融合將多個**的數據集融合成一個單一的特征向量空間,然后將其用作機器學習算法的輸入,訓練機器學習模型,如圖1所示。由于多模態數據的前端融合往往無法充分利用多個模態數據間的互補性,且前端融合的原始數據通常包含大量的冗余信息。因此,多模態前端融合方法常常與特征提取方法相結合以剔除冗余信息,基于領域經驗從每個模態中提取更高等別的特征表示,或者應用深度學習算法直接學習特征表示,然后在特性級別上進行融合。后端融合則是將不同模態數據分別訓練好的分類器輸出決策進行融合,如圖2所示。軟件內部檢測報告創新光譜分析技術賦能艾策檢測,實現食品藥品中微量有害物質的超痕量檢測。
沒有滿足用戶的需求1未達到需求規格說明書表明的功能2出現了需求規格說明書指明不會出現的錯誤3軟件功能超出了需求規格說明書指明的范圍4軟件質量不夠高維護性移植性效率性可靠性易用性功能性健壯性等5軟件未達到軟件需求規格說明書未指出但是應該達到的目標計算器沒電了下次還得能正常使用6測試或用戶覺得不好軟件缺陷的表現形式1功能沒有完全實現2產品的實際結果和所期望的結果不一致3沒有達到需求規格說明書所規定的的性能指標等4運行出錯斷電運行終端系統崩潰5界面排版重點不突出,格式不統一6用戶不能接受的其他問題軟件缺陷產生的原因需求錯誤需求記錄錯誤設計說明錯誤代碼錯誤兼容性錯誤時間不充足缺陷的信息缺陷id缺陷標題缺陷嚴重程度缺陷的優先級缺陷的所屬模塊缺陷的詳細描述缺陷提交時間缺陷的嚴重程度劃分1blocker系統癱瘓異常退出計算錯誤大部分功能不能使用死機2major功能點不符合用戶需求數據丟失3normal**功能特定調點斷斷續續4Trivial細小的錯誤優先級劃分緊急高中低。
坐標點(0,1)**一個完美的分類器,它將所有的樣本都正確分類。roc曲線越接近左上角,該分類器的性能越好。從圖9可以看出,該方案的roc曲線非常接近左上角,性能較優。另外,前端融合模型的auc值為。(5)后端融合后端融合的架構如圖10所示,后端融合方式用三種模態的特征分別訓練神經網絡模型,然后進行決策融合,隱藏層的***函數為relu,輸出層的***函數是sigmoid,中間使用dropout層進行正則化,防止過擬合,優化器(optimizer)采用的是adagrad,batch_size是40。本次實驗使用了80%的樣本訓練,20%的樣本驗證,訓練50個迭代以便于找到較優的epoch值。隨著迭代數的增加,后端融合模型的準確率變化曲線如圖11所示,模型的對數損失變化曲線如圖12所示。從圖11和圖12可以看出,當epoch值從0增加到5過程中,模型的訓練準確率和驗證準確率快速提高,模型的訓練對數損失和驗證對數損失快速減少;當epoch值從5到50的過程中,前端融合模型的訓練準確率和驗證準確率小幅提高,訓練對數損失和驗證對數損失緩慢下降;綜合分析圖11和圖12的準確率和對數損失變化曲線,選取epoch的較優值為40。確定模型的訓練迭代數為40后,進行了10折交叉驗證實驗。安全掃描確認軟件通過ISO 27001標準,無高危漏洞記錄。
圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構圖。圖11是后端融合模型的準確率變化曲線圖。圖12是后端融合模型的對數損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構圖。圖17是中間融合模型的準確率變化曲線圖。圖18是中間融合模型的對數損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實施方式下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例**是本發明一部分實施例,而不是全部的實施例。基于本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬于本發明保護的范圍。安全審計發現日志模塊存在敏感信息明文存儲缺陷。北京軟件第三方測試
壓力測試表明系統在5000并發用戶時響應延遲激增300%。軟件功能性測評報告價格
[3]軟件測試方法原則編輯1.盡早不斷測試的原則應當盡早不斷地進行軟件測試。據統計約60%的錯誤來自設計以前,并且修正一個軟件錯誤所需的費用將隨著軟件生存周期的進展而上升。錯誤發現得越早,修正它所需的費用就越少。[4]測試用例由測試輸入數據和與之對應的預期輸出結果這兩部分組成。[4]3.**測試原則(1)**測試原則。這是指軟件測試工作由在經濟上和管理上**于開發機構的**進行。程序員應避免檢査自己的程序,程序設計機構也不應測試自己開發的程序。軟件開發者難以客觀、有效地測試自己的軟件,而找出那些因為對需求的誤解而產生的錯誤就更加困難。[4](2)合法和非合法原則。在設計時,測試用例應當包括合法的輸入條件和不合法的輸入條件。[4](3)錯誤群集原則。軟件錯誤呈現群集現象。經驗表明,某程序段剩余的錯誤數目與該程序段中已發現的錯誤數目成正比,所以應該對錯誤群集的程序段進行重點測試。[4](4)嚴格性原則。嚴格執行測試計劃,排除測試的隨意性。[4](5)覆蓋原則。應當對每一個測試結果做***的檢查。[4](6)定義功能測試原則。檢查程序是否做了要做的事*是成功的一半,另一半是看程序是否做了不屬于它做的事。[4](7)回歸測試原則。應妥善保留測試用例。軟件功能性測評報告價格