綜合上面的分析可以看出,惡意軟件的格式信息和良性軟件是有很多差異性的,以可執(zhí)行文件的格式信息作為特征,是識(shí)別已知和未知惡意軟件的可行方法。對(duì)每個(gè)樣本進(jìn)行格式結(jié)構(gòu)解析,提取**每個(gè)樣本實(shí)施例件的格式結(jié)構(gòu)信息,可執(zhí)行文件的格式規(guī)范都由操作系統(tǒng)廠商給出,按照操作系統(tǒng)廠商給出的格式規(guī)范提取即可。pe文件的格式結(jié)構(gòu)有許多屬性,但大多數(shù)屬性無(wú)法區(qū)分惡意軟件和良性軟件,經(jīng)過(guò)深入分析pe文件的格式結(jié)構(gòu)屬性,提取了可能區(qū)分惡意軟件和良性軟件的136個(gè)格式結(jié)構(gòu)屬性,如表2所示。表2可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)屬性特征描述數(shù)量(個(gè))引用dll的總數(shù)1引用api的總數(shù)1導(dǎo)出表中符號(hào)的總數(shù)1重定位節(jié)的項(xiàng)目總數(shù),連續(xù)的幾個(gè)字節(jié)可能是完成特定功能的一段代碼,或者是可執(zhí)行文件的結(jié)構(gòu)信息,也可能是某個(gè)惡意軟件中特有的字節(jié)碼序列。pe文件可表示為字節(jié)碼序列,惡意軟件可能存在一些共有的字節(jié)碼子序列模式,研究人員直覺(jué)上認(rèn)為一些字節(jié)碼子序列在惡意軟件可能以較高頻率出現(xiàn),且這些字節(jié)碼序列和良性軟件字節(jié)碼序列存在明顯差異。可執(zhí)行文件通常是二進(jìn)制文件,需要把二進(jìn)制文件轉(zhuǎn)換為十六進(jìn)制的文本實(shí)施例件,就得到可執(zhí)行文件的十六進(jìn)制字節(jié)碼序列。隱私合規(guī)檢測(cè)確認(rèn)用戶數(shù)據(jù)加密符合GDPR標(biāo)準(zhǔn)要求。內(nèi)蒙古第三方軟件測(cè)評(píng)
先將當(dāng)前軟件樣本件的二進(jìn)制可執(zhí)行文件轉(zhuǎn)換為十六進(jìn)制字節(jié)碼序列,然后采用n-grams方法在十六進(jìn)制字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的連續(xù)部分重疊的短序列特征,提取得到當(dāng)前軟件樣本的二進(jìn)制可執(zhí)行文件的字節(jié)碼n-grams的特征表示。生成軟件樣本的dll和api信息特征視圖,是先統(tǒng)計(jì)所有類(lèi)別已知的軟件樣本的pe可執(zhí)行文件引用的dll和api信息,從中選取引用頻率**高的多個(gè)dll和api信息;然后判斷當(dāng)前的軟件樣本的導(dǎo)入節(jié)里是否存在選擇出的某個(gè)引用頻率**高的dll和api信息,如存在,則將當(dāng)前軟件樣本的該dll或api信息以1表示,否則將其以0表示,從而對(duì)當(dāng)前軟件樣本的所有dll和api信息進(jìn)行表示形成當(dāng)前軟件樣本的dll和api信息特征視圖。生成軟件樣本的格式信息特征視圖,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,形成當(dāng)前軟件樣本的格式信息特征視圖。從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中選取可能區(qū)分惡意軟件和良性軟件的pe格式結(jié)構(gòu)特征,是從當(dāng)前軟件樣本的pe格式結(jié)構(gòu)信息中確定存在特定格式異常的pe格式結(jié)構(gòu)特征以及存在明顯的統(tǒng)計(jì)差異的格式結(jié)構(gòu)特征。特定格式異常包括:(1)代碼從**后一節(jié)開(kāi)始執(zhí)行,(2)節(jié)頭部可疑的屬性,。信息系統(tǒng)安全評(píng)測(cè)報(bào)告對(duì)比分析顯示資源占用率高于同類(lèi)產(chǎn)品均值26%。
在不知道多長(zhǎng)的子序列能更好的表示可執(zhí)行文件的情況下,只能以固定窗口大小在字節(jié)碼序列中滑動(dòng),產(chǎn)生大量的短序列,由機(jī)器學(xué)習(xí)方法選擇可能區(qū)分惡意軟件和良性軟件的短序列作為特征,產(chǎn)生短序列的方法叫n-grams。“080074ff13b2”的字節(jié)碼序列,如果以3-grams產(chǎn)生連續(xù)部分重疊的短序列,將得到“080074”、“0074ff”、“74ff13”、“ff13b2”四個(gè)短序列。每個(gè)短序列特征的權(quán)重表示有多種方法。**簡(jiǎn)單的方法是如果該短序列在具體樣本中出現(xiàn),就表示為1;如果沒(méi)有出現(xiàn),就表示為0,也可以用。本實(shí)施例采用3-grams方法提取特征,3-grams產(chǎn)生的短序列非常龐大,將產(chǎn)生224=(16,777,216)個(gè)特征,如此龐大的特征集在計(jì)算機(jī)內(nèi)存中存儲(chǔ)和算法效率上都是問(wèn)題。如果短序列特征的tf較小,對(duì)機(jī)器學(xué)習(xí)可能沒(méi)有意義,選取了tf**高的5000個(gè)短序列特征,計(jì)算每個(gè)短序列特征的,每個(gè)短序列特征的權(quán)重是判斷其所在軟件樣本是否為惡意軟件的依據(jù),也是區(qū)分每個(gè)軟件樣本的依據(jù)。(4)前端融合前端融合的架構(gòu)如圖4所示,前端融合方式將三種模態(tài)的特征合并,然后輸入深度神經(jīng)網(wǎng)絡(luò),隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器。
后端融合模型的10折交叉驗(yàn)證的準(zhǔn)確率是%,對(duì)數(shù)損失是,混淆矩陣如圖13所示,規(guī)范化后的混淆矩陣如圖14所示。后端融合模型的roc曲線如圖15所示,其顯示后端融合模型的auc值為。(6)中間融合中間融合的架構(gòu)如圖16所示,中間融合方式用深度神經(jīng)網(wǎng)絡(luò)從三種模態(tài)的特征分別抽取高等特征表示,然后合并學(xué)習(xí)得到的特征表示,再作為下一個(gè)深度神經(jīng)網(wǎng)絡(luò)的輸入訓(xùn)練模型,隱藏層的***函數(shù)為relu,輸出層的***函數(shù)是sigmoid,中間使用dropout層進(jìn)行正則化,防止過(guò)擬合,優(yōu)化器(optimizer)采用的是adagrad,batch_size是40。圖16中,用于抽取dll和api信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含3個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是128,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且3個(gè)隱含層中間間隔設(shè)置有dropout層。用于抽取格式信息特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含2個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是64,其第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是32,且2個(gè)隱含層中間設(shè)置有dropout層。用于抽取字節(jié)碼n-grams特征視圖的深度神經(jīng)網(wǎng)絡(luò)包含4個(gè)隱含層,其***個(gè)隱含層的神經(jīng)元個(gè)數(shù)是512,第二個(gè)隱含層的神經(jīng)元個(gè)數(shù)是384,第三個(gè)隱含層的神經(jīng)元個(gè)數(shù)是256,第四個(gè)隱含層的神經(jīng)元個(gè)數(shù)是125。漏洞掃描報(bào)告顯示依賴庫(kù)存在5個(gè)已知CVE漏洞。
快速原型模型部分需求-原型-補(bǔ)充-運(yùn)行外包公司預(yù)先不能明確定義需求的軟件系統(tǒng)的開(kāi)發(fā),更好的滿足用戶需求并減少由于軟件需求不明確帶來(lái)的項(xiàng)目開(kāi)發(fā)風(fēng)險(xiǎn)。不適合大型系統(tǒng)的開(kāi)發(fā),前提要有一個(gè)展示性的產(chǎn)品原型,在一定程度上的補(bǔ)充,限制開(kāi)發(fā)人員的創(chuàng)新。螺旋模型每次功能都要**行風(fēng)險(xiǎn)評(píng)估,需求設(shè)計(jì)-測(cè)試很大程度上是一種風(fēng)險(xiǎn)驅(qū)動(dòng)的方法體系,在每個(gè)階段循環(huán)前,都進(jìn)行風(fēng)險(xiǎn)評(píng)估。需要有相當(dāng)豐富的風(fēng)險(xiǎn)評(píng)估經(jīng)驗(yàn)和專(zhuān)門(mén)知識(shí),在風(fēng)險(xiǎn)較大的項(xiàng)目開(kāi)發(fā)中,很有必要,多次迭代,增加成本。軟件測(cè)試模型需求分析-概要設(shè)計(jì)-詳細(xì)設(shè)計(jì)-開(kāi)發(fā)-單元測(cè)試-集成測(cè)試-系統(tǒng)測(cè)試-驗(yàn)收測(cè)試***清楚標(biāo)識(shí)軟件開(kāi)發(fā)的階段包含底層測(cè)試和高層測(cè)試采用自頂向下逐步求精的方式把整個(gè)開(kāi)發(fā)過(guò)程分成不同的階段,每個(gè)階段的工作都很明確,便于控制開(kāi)發(fā)過(guò)程。缺點(diǎn)程序已經(jīng)完成,錯(cuò)誤在測(cè)試階段發(fā)現(xiàn)或沒(méi)有發(fā)現(xiàn),不能及時(shí)修改而且需求經(jīng)常變化導(dǎo)致V步驟反復(fù)執(zhí)行,工作量很大。W模型開(kāi)發(fā)一個(gè)V測(cè)試一個(gè)V用戶需求驗(yàn)收測(cè)試設(shè)計(jì)需求分析系統(tǒng)測(cè)試設(shè)計(jì)概要設(shè)計(jì)集成測(cè)試設(shè)計(jì)詳細(xì)設(shè)計(jì)單元測(cè)試設(shè)計(jì)編碼單元測(cè)試集成集成測(cè)試運(yùn)行系統(tǒng)測(cè)試交付驗(yàn)收測(cè)試***測(cè)試更早的介入,可以發(fā)現(xiàn)開(kāi)發(fā)初期的缺陷。艾策醫(yī)療檢測(cè)中心為體外診斷試劑提供全流程合規(guī)性驗(yàn)證服務(wù)。軟件 產(chǎn)品檢測(cè)測(cè)試
艾策科技發(fā)布產(chǎn)品:智能企業(yè)管理平臺(tái)。內(nèi)蒙古第三方軟件測(cè)評(píng)
本書(shū)內(nèi)容充實(shí)、實(shí)用性強(qiáng),可作為高職高專(zhuān)院校計(jì)算機(jī)軟件軟件測(cè)試技術(shù)課程的教材,也可作為有關(guān)軟件測(cè)試的培訓(xùn)教材,對(duì)從事軟件測(cè)試實(shí)際工作的相關(guān)技術(shù)人員也具有一定的參考價(jià)值。目錄前言第1章軟件測(cè)試基本知識(shí)第2章測(cè)試計(jì)劃第3章測(cè)試設(shè)計(jì)和開(kāi)發(fā)第4章執(zhí)行測(cè)試第5章測(cè)試技術(shù)與應(yīng)用第6章軟件測(cè)試工具第7章測(cè)試文檔實(shí)例附錄IEEE模板參考文獻(xiàn)軟件測(cè)試技術(shù)圖書(shū)3基本信息書(shū)號(hào):軟件測(cè)試技術(shù)7-113-07054作者:李慶義定價(jià):出版日期:套系名稱:21世紀(jì)高校計(jì)算機(jī)應(yīng)用技術(shù)系列規(guī)劃教材出版單位:**鐵道出版社內(nèi)容簡(jiǎn)介本書(shū)主要介紹軟件適用測(cè)試技術(shù)。內(nèi)容分為三部分,***部分為概念基礎(chǔ)、測(cè)試?yán)碚摰谋尘凹鞍l(fā)展,簡(jiǎn)要地分析了當(dāng)前測(cè)試技術(shù)的現(xiàn)狀;第二部分介紹軟件測(cè)試的程序分析技術(shù)、測(cè)試技術(shù),軟件測(cè)試的方法和策略,分析了軟件業(yè)在測(cè)試方面的研究成果,并總結(jié)了測(cè)試的基本原則和一些好的實(shí)踐經(jīng)驗(yàn);第三部分介紹了兩種測(cè)試工具軟件——基于Windows的WinRunner和服務(wù)器負(fù)載測(cè)試軟件WAS。本書(shū)結(jié)合實(shí)際,從一些具體的實(shí)例出發(fā),介紹軟件測(cè)試的一些基本概念和方法,分析出軟件測(cè)試的基本理論知識(shí),適用性比較強(qiáng)。內(nèi)蒙古第三方軟件測(cè)評(píng)