機器必然要超越人類的五官,能夠看到人類看不到的世界,聽到人類聽不到的世界。語音識別的產業歷程語音識別這半個多世紀的產業歷程中,其中的共有三個關鍵節點,兩個和技術有關,一個和應用有關。關鍵節點是1988年的一篇博士論文,開發了基于隱馬爾科夫模型(HMM)的語音識別系統——Sphinx,當時實現這一系統的正是現在的投資人李開復。從1986年到2010年,雖然混合高斯模型效果得到持續改善,而被應用到語音識別中,并且確實提升了語音識別的效果,但實際上語音識別已經遭遇了技術天花板,識別的準確率很難超過90%。很多人可能還記得,在1998年前后IBM、微軟都曾經推出和語音識別相關的軟件,但終并未取得成功。第二個關鍵節點是2009年深度學習被系統應用到語音識別領域中。這導致識別的精度再次大幅提升,終突破90%,并且在標準環境下逼近98%。有意思的是,盡管技術取得了突破,也涌現出了一些與此相關的產品,比如Siri、GoogleAssistant等,但與其引起的關注度相比,這些產品實際取得的成績則要遜色得多。Siri剛一面世的時候,時任GoogleCEO的施密特就高呼,這會對Google的搜索業務產生根本性威脅,但事實上直到AmazonEcho的面世,這種根本性威脅才真的有了具體的載體。在語音對話場景采買一句話識別(短語音)接口或者實時語音識別(長語音流)接口,都屬于流式語音識別。重慶c語音識別
因此一定是兩者融合才有可能更好地解決噪聲下的語音識別問題。(3)上述兩個問題的共性是目前的深度學習用到了語音信號各個頻帶的能量信息,而忽略了語音信號的相位信息,尤其是對于多通道而言,如何讓深度學習更好的利用相位信息可能是未來的一個方向。(4)另外,在較少數據量的情況下,如何通過遷移學習得到一個好的聲學模型也是研究的熱點方向。例如方言識別,若有一個比較好的普通話聲學模型,如何利用少量的方言數據得到一個好的方言聲學模型,如果做到這點將極大擴展語音識別的應用范疇。這方面已經取得了一些進展,但更多的是一些訓練技巧,距離目標還有一定差距。(5)語音識別的目的是讓機器可以理解人類,因此轉換成文字并不是終的目的。如何將語音識別和語義理解結合起來可能是未來更為重要的一個方向。語音識別里的LSTM已經考慮了語音的歷史時刻信息,但語義理解需要更多的歷史信息才能有幫助,因此如何將更多上下文會話信息傳遞給語音識別引擎是一個難題。(6)讓機器聽懂人類語言,靠聲音信息還不夠,“聲光電熱力磁”這些物理傳感手段,下一步必然都要融合在一起,只有這樣機器才能感知世界的真實信息,這是機器能夠學習人類知識的前提條件。而且。湖北語音識別代碼語音識別,通常稱為自動語音識別。
人們在使用梅爾倒譜系數及感知線性預測系數時,通常加上它們的一階、二階差分,以引入信號特征的動態特征。聲學模型是語音識別系統中為重要的部分之一。聲學建模涉及建模單元選取、模型狀態聚類、模型參數估計等很多方面。在目前的LVCSR系統中,普遍采用上下文相關的模型作為基本建模單元,以刻畫連續語音的協同發音現象。在考慮了語境的影響后,聲學模型的數量急劇增加,LVCSR系統通常采用狀態聚類的方法壓縮聲學參數的數量,以簡化模型的訓練。在訓練過程中,系統對若干次訓練語音進行預處理,并通過特征提取得到特征矢量序列,然后由特征建模模塊建立訓練語音的參考模式庫。搜索是在指定的空間當中,按照一定的優化準則,尋找優詞序列的過程。搜索的本質是問題求解,應用于語音識別、機器翻譯等人工智能和模式識別的各個領域。它通過利用已掌握的知識(聲學知識、語音學知識、詞典知識、語言模型知識等),在狀態(從高層至底層依次為詞、聲學模型、HMM狀態)空間中找到優的狀態序列。終的詞序列是對輸入的語音信號在一定準則下的一個優描述。在識別階段,將輸入語音的特征矢量參數同訓練得到的參考模板庫中的模式進行相似性度量比較。
3)上述兩個問題的共性是目前的深度學習用到了語音信號各個頻帶的能量信息,而忽略了語音信號的相位信息,尤其是對于多通道而言,如何讓深度學習更好的利用相位信息可能是未來的一個方向。(4)另外,在較少數據量的情況下,如何通過遷移學習得到一個好的聲學模型也是研究的熱點方向。例如方言識別,若有一個比較好的普通話聲學模型,如何利用少量的方言數據得到一個好的方言聲學模型,如果做到這點將極大擴展語音識別的應用范疇。這方面已經取得了一些進展,但更多的是一些訓練技巧,距離目標還有一定差距。(5)語音識別的目的是讓機器可以理解人類,因此轉換成文字并不是終的目的。如何將語音識別和語義理解結合起來可能是未來更為重要的一個方向。語音識別里的LSTM已經考慮了語音的歷史時刻信息,但語義理解需要更多的歷史信息才能有幫助,因此如何將更多上下文會話信息傳遞給語音識別引擎是一個難題。(6)讓機器聽懂人類語言,靠聲音信息還不夠,“聲光電熱力磁”這些物理傳感手段,下一步必然都要融合在一起,只有這樣機器才能感知世界的真實信息,這是機器能夠學習人類知識的前提條件。而且,機器必然要超越人類的五官,能夠看到人類看不到的世界。
在另一個視頻中走得快,或者即使在一次觀察過程中有加速和減速,也可以檢測到行走模式的相似性。
發音和單詞選擇可能會因地理位置和口音等因素而不同。哦,別忘了語言也因年齡和性別而有所不同!考慮到這一點,為ASR系統提供的語音樣本越多,它在識別和分類新語音輸入方面越好。從各種各樣的聲音和環境中獲取的樣本越多,系統越能在這些環境中識別聲音。通過專門的微調和維護,自動語音識別系統將在使用過程中得到改進。因此,從基本的角度來看,數據越多越好。的確,目前進行的研究和優化較小數據集相關,但目前大多數模型仍需要大量數據才能發揮良好的性能。幸運的是,得益于數據集存儲庫的數據收集服務,音頻數據的收集變得越發簡單。這反過來又增加了技術發展的速度,那么,接下來簡單了解一下,未來自動語音識別能在哪些方面大展身手。ASR技術的未來ASR技術已融身于社會。虛擬助手、車載系統和家庭自動化都讓日常生活更加便利,應用范圍也可能擴大。隨著越來越多的人接納這些服務,技術將進一步發展。除上述示例之外,自動語音識別在各種有趣的領域和行業中都發揮著作用:·通訊:隨著全球手機的普及,ASR系統甚至可以為閱讀和寫作水平較低的社區提供信息、在線搜索和基于文本的服務。實時語音識別就是對音頻流進行實時識別。深圳自主可控語音識別服務標準
也被稱為自動語音識別技術(ASR),計算機語音識別或語音到文本(STT)技術。重慶c語音識別
美國**部下屬的一個名為美國**高級研究計劃局(DefenseAdvancedResearchProjectsAgency,DARPA)的行政機構,在20世紀70年代介入語音領域,開始資助一項旨在支持語言理解系統的研究開發工作的10年戰略計劃。在該計劃推動下,誕生了一系列不錯的研究成果,如卡耐基梅隆大學推出了Harpy系統,其能識別1000多個單詞且有不錯的識別率。第二階段:統計模型(GMM-HMM)到了20世紀80年代,更多的研究人員開始從對孤立詞識別系統的研究轉向對大詞匯量連續語音識別系統的研究,并且大量的連續語音識別算法應運而生,例如分層構造(LevelBuilding)算法等。同時,20世紀80年代的語音識別研究相較于20世紀70年代,另一個變化是基于統計模型的技術逐漸替代了基于模板匹配的技術。統計模型兩項很重要的成果是聲學模型和語言模型,語言模型以n元語言模型(n-gram),聲學模型以HMM。HMM的理論基礎在1970年前后由Baum等人建立,隨后由卡耐基梅隆大學(CMU)的Baker和IBM的Jelinek等人應用到語音識別中。在20世紀80年代中期,Bell實驗室的.Rabiner等人對HMM進行了深入淺出的介紹。并出版了語音識別專著FundamentalsofSpeechRecognition,有力地推動了HMM在語音識別中的應用。重慶c語音識別