云南實時語音識別

來源: 發(fā)布時間:2024-01-04

在人與機器設備交互中,言語是方便自然并且直接的方式之一。同時隨著技術的進步,越來越多的人們也期望設備能夠具備與人進行言語溝通的能力,因此語音識別這一技術也越來越受到人們關注。尤其隨著深度學習技術應用在語音識別技術中,使得語音識別的性能得到了很大的提升,也使得語音識別技術的普及成為了現實,深圳魚亮科技專業(yè)語音識別技術提供商,提供:語音喚醒,語音識別,文字翻譯,AI智能會議,信號處理,降噪等語音識別技術。近年來,該領域受益于深度學習和大數據技術的進步。云南實時語音識別

    在我們的生活中,語言是傳遞信息重要的方式,它能夠讓人們之間互相了解。人和機器之間的交互也是相同的道理,讓機器人知道人類要做什么、怎么做。交互的方式有動作、文本或語音等等,其中語音交互越來越被重視,因為隨著互聯網上智能硬件的普及,產生了各種互聯網的入口方式,而語音是簡單、直接的交互方式,是通用的輸入模式。在1952年,貝爾研究所研制了世界上能識別10個英文數字發(fā)音的系統(tǒng)。1960年英國的Denes等人研制了世界上語音識別(ASR)系統(tǒng)。大規(guī)模的語音識別研究始于70年代,并在單個詞的識別方面取得了實質性的進展。上世紀80年代以后,語音識別研究的重點逐漸轉向更通用的大詞匯量、非特定人的連續(xù)語音識別。90年代以來,語音識別的研究一直沒有太大進步。但是,在語音識別技術的應用及產品化方面取得了較大的進展。自2009年以來,得益于深度學習研究的突破以及大量語音數據的積累,語音識別技術得到了突飛猛進的發(fā)展。深度學習研究使用預訓練的多層神經網絡,提高了聲學模型的準確率。微軟的研究人員率先取得了突破性進展,他們使用深層神經網絡模型后,語音識別錯誤率降低了三分之一,成為近20年來語音識別技術方面快的進步。另外,隨著手機等移動終端的普及。陜西語音識別字語音命令可用于發(fā)起電話呼叫、選擇無線電臺或從兼容的智能手機、MP3播放器或音樂加載閃存驅動器播放音樂。

    業(yè)界大部分都是按照靜態(tài)解碼的方式進行,即將聲學模型和語言模型構造成WFST網絡,該網絡包含了所有可能路徑,解碼就是在該空間進行搜索的過程。由于該理論相對成熟,更多的是工程優(yōu)化的問題,所以不論是學術還是產業(yè)目前關注的較少。語音識別的技術趨勢語音識別主要趨于遠場化和融合化的方向發(fā)展,但在遠場可靠性還有很多難點沒有突破,比如多輪交互、多人噪雜等場景還有待突破,還有需求較為迫切的人聲分離等技術。新的技術應該徹底解決這些問題,讓機器聽覺遠超人類的感知能力。這不能只是算法的進步,需要整個產業(yè)鏈的共同技術升級,包括更為先進的傳感器和算力更強的芯片。單從遠場語音識別技術來看,仍然存在很多挑戰(zhàn),包括:(1)回聲消除技術。由于喇叭非線性失真的存在,單純依靠信號處理手段很難將回聲消除干凈,這也阻礙了語音交互系統(tǒng)的推廣,現有的基于深度學習的回聲消除技術都沒有考慮相位信息,直接求取的是各個頻帶上的增益,能否利用深度學習將非線性失真進行擬合,同時結合信號處理手段可能是一個好的方向。(2)噪聲下的語音識別仍有待突破。信號處理擅長處理線性問題,深度學習擅長處理非線性問題,而實際問題一定是線性和非線性的疊加。

    一直推崇的是Chain模型。該模型是一種類似于CTC的技術,建模單元相比于傳統(tǒng)的狀態(tài)要更粗顆粒一些,只有兩個狀態(tài),一個狀態(tài)是CDPhone,另一個是CDPhone的空白,訓練方法采用的是Lattice-FreeMMI訓練。該模型結構可以采用低幀率的方式進行解碼,解碼幀率為傳統(tǒng)神經網絡聲學模型的三分之一,而準確率相比于傳統(tǒng)模型有非常的提升。遠場語音識別技術主要解決真實場景下舒適距離內人機任務對話和服務的問題,是2015年以后開始興起的技術。由于遠場語音識別解決了復雜環(huán)境下的識別問題,在智能家居、智能汽車、智能會議、智能安防等實際場景中獲得了廣泛應用。目前國內遠場語音識別的技術框架以前端信號處理和后端語音識別為主,前端利用麥克風陣列做去混響、波束形成等信號處理,以讓語音更清晰,然后送入后端的語音識別引擎進行識別。語音識別另外兩個技術部分:語言模型和解碼器,目前來看并沒有太大的技術變化。語言模型主流還是基于傳統(tǒng)的N-Gram方法,雖然目前也有神經網絡的語言模型的研究,但在實用中主要還是更多用于后處理糾錯。解碼器的指標是速度,業(yè)界大部分都是按照靜態(tài)解碼的方式進行,即將聲學模型和語言模型構造成WFST網絡。該網絡包含了所有可能路徑。

     前端語音識別指命令者向語音識別引擎發(fā)出指令,識別出的單詞在說話時顯示出來,命令者負責編輯和簽署文檔。

    CNN本質上也可以看作是從語音信號中不斷抽取特征的一個過程。CNN相比于傳統(tǒng)的DNN模型,在相同性能情況下,前者的參數量更少。綜上所述,對于建模能力來說,DNN適合特征映射到空間,LSTM具有長短時記憶能力,CNN擅長減少語音信號的多樣性,因此一個好的語音識別系統(tǒng)是這些網絡的組合。端到端時代語音識別的端到端方法主要是代價函數發(fā)生了變化,但神經網絡的模型結構并沒有太大變化。總體來說,端到端技術解決了輸入序列的長度遠大于輸出序列長度的問題。端到端技術主要分成兩類:一類是CTC方法,另一類是Sequence-to-Sequence方法。傳統(tǒng)語音識別DNN-HMM架構里的聲學模型,每一幀輸入都對應一個標簽類別,標簽需要反復的迭代來確保對齊更準確。采用CTC作為損失函數的聲學模型序列,不需要預先對數據對齊,只需要一個輸入序列和一個輸出序列就可以進行訓練。CTC關心的是預測輸出的序列是否和真實的序列相近,而不關心預測輸出序列中每個結果在時間點上是否和輸入的序列正好對齊。CTC建模單元是音素或者字,因此它引入了Blank。對于一段語音,CTC**后輸出的是尖峰的序列,尖峰的位置對應建模單元的Label,其他位置都是Blank。語音識別應用包括語音用戶界面,例如語音撥號、呼叫路由、多用戶設備控制、搜索、簡單的數據輸入等。廣州光纖數據語音識別設計

這是一種允許計算機在具有特定限制的兩個給定序列(例如時間序列)之間找到比較好匹配的方法。云南實時語音識別

    LSTM通過輸入門、輸出門和遺忘門可以更好的控制信息的流動和傳遞,具有長短時記憶能力。雖然LSTM的計算復雜度會比DNN增加,但其整體性能比DNN有相對20%左右穩(wěn)定提升。BLSTM是在LSTM基礎上做的進一步改進,考慮語音信號的歷史信息對當前幀的影響,還要考慮未來信息對當前幀的影響,因此其網絡中沿時間軸存在正向和反向兩個信息傳遞過程,這樣該模型可以更充分考慮上下文對于當前語音幀的影響,能夠極大提高語音狀態(tài)分類的準確率。BLSTM考慮未來信息的代價是需要進行句子級更新,模型訓練的收斂速度比較慢,同時也會帶來解碼的延遲,對于這些問題,業(yè)屆都進行了工程優(yōu)化與改進,即使現在仍然有很多大公司使用的都是該模型結構。圖像識別中主流的模型就是CNN,而語音信號的時頻圖也可以看作是一幅圖像,因此CNN也被引入到語音識別中。要想提高語音識別率,就需要克服語音信號所面臨的多樣性,包括說話人自身、說話人所處的環(huán)境、采集設備等,這些多樣性都可以等價為各種濾波器與語音信號的卷積。而CNN相當于設計了一系列具有局部關注特性的濾波器,并通過訓練學習得到濾波器的參數,從而從多樣性的語音信號中抽取出不變的部分。云南實時語音識別

欧美乱妇精品无乱码亚洲欧美,日本按摩高潮a级中文片三,久久男人电影天堂92,好吊妞在线视频免费观看综合网
中文字幕自拍制服丝袜 | 一级免费在线观看 | 最新国产在线拍揄自揄视频 | 色五月丁香五月综合五月亚洲 | 中文专区欧美三级在线 | 中文字幕亚洲日韩欧美色 |