語音識別的原理?語音識別是將語音轉換為文本的技術,是自然語言處理的一個分支。前臺主要步驟分為信號搜集、降噪和特征提取三步,提取的特征在后臺由經過語音大數據訓練得到的語音模型對其進行解碼,終把語音轉化為文本,實現達到讓機器識別和理解語音的目的。根據公開資料顯示,目前語音識別的技術成熟度較高,已達到95%的準確度。然而,需要指出的是,從95%到99%的準確度帶來的改變才是質的飛躍,將使人們從偶爾使用語音變到常常使用。以下我們來舉例,當我們說“jin天天氣怎么樣”時,機器是怎么進行語音識別的??2語義識別?語義識別是人工智能的重要分支之一,解決的是“聽得懂”的問題。其大的作用是改變人機交互模式,將人機交互由原始的鼠標、鍵盤交互轉變為語音對話的方式。此外,我們認為目前的語義識別行業還未出現壟斷者,新進入的創業公司仍具備一定機會。語義識別是自然語言處理(NLP)技術的重要組成部分。NLP在實際應用中大的困難還是語義的復雜性,此外,深度學習算法也不是語義識別領域的優算法。但隨著整個AI行業發展進程加速,將為NLP帶來長足的進步從1996年至今,國內至今仍在運營的人工智能公司接近400家。語音識別自半個世紀前誕生以來,一直處于不溫不火的狀態。新疆語音識別平臺
機器必然要超越人類的五官,能夠看到人類看不到的世界,聽到人類聽不到的世界。語音識別的產業歷程語音識別這半個多世紀的產業歷程中,其中的共有三個關鍵節點,兩個和技術有關,一個和應用有關。關鍵節點是1988年的一篇博士論文,開發了基于隱馬爾科夫模型(HMM)的語音識別系統——Sphinx,當時實現這一系統的正是現在的投資人李開復。從1986年到2010年,雖然混合高斯模型效果得到持續改善,而被應用到語音識別中,并且確實提升了語音識別的效果,但實際上語音識別已經遭遇了技術天花板,識別的準確率很難超過90%。很多人可能還記得,在1998年前后IBM、微軟都曾經推出和語音識別相關的軟件,但終并未取得成功。第二個關鍵節點是2009年深度學習被系統應用到語音識別領域中。這導致識別的精度再次大幅提升,終突破90%,并且在標準環境下逼近98%。有意思的是,盡管技術取得了突破,也涌現出了一些與此相關的產品,比如Siri、GoogleAssistant等,但與其引起的關注度相比,這些產品實際取得的成績則要遜色得多。Siri剛一面世的時候,時任GoogleCEO的施密特就高呼,這會對Google的搜索業務產生根本性威脅,但事實上直到AmazonEcho的面世,這種根本性威脅才真的有了具體的載體。四川語音識別字動態時間規整是一種用于測量可能隨時間或速度變化的兩個序列之間相似性的算法。
DBN),促使了深度神經網絡(DNN)研究的復蘇。2009年,Hinton將DNN應用于語音的聲學建模,在TIMIT上獲得了當時比較好的結果。2011年底,微軟研究院的俞棟、鄧力又把DNN技術應用在了大詞匯量連續語音識別任務上,降低了語音識別錯誤率。從此語音識別進入DNN-HMM時代。DNN-HMM主要是用DNN模型代替原來的GMM模型,對每一個狀態進行建模,DNN帶來的好處是不再需要對語音數據分布進行假設,將相鄰的語音幀拼接又包含了語音的時序結構信息,使得對于狀態的分類概率有了明顯提升,同時DNN還具有強大環境學習能力,可以提升對噪聲和口音的魯棒性。簡單來說,DNN就是給出輸入的一串特征所對應的狀態概率。由于語音信號是連續的,不僅各個音素、音節以及詞之間沒有明顯的邊界,各個發音單位還會受到上下文的影響。雖然拼幀可以增加上下文信息,但對于語音來說還是不夠。而遞歸神經網絡(RNN)的出現可以記住更多歷史信息,更有利于對語音信號的上下文信息進行建模。由于簡單的RNN存在梯度和梯度消散問題,難以訓練,無法直接應用于語音信號建模上,因此學者進一步探索,開發出了很多適合語音建模的RNN結構,其中有名的就是LSTM。
而且有的產品在可用性方面達到了很好的性能,例如微軟公司的Whisper、貝爾實驗室的***TO、麻省理工學院的SUMMIT系統、IBM的ViaVioce系統。英國劍橋大學SteveYoung開創的語音識別工具包HTK(HiddenMarkovToolKit),是一套開源的基于HMM的語音識別軟件工具包,它采用模塊化設計,而且配套了非常詳細的HTKBook文檔,這既方便了初學者的學習、實驗(HTKBook文檔做得很好),也為語音識別的研究人員提供了專業且便于搭建的開發平臺。HTK自1995年發布以來,被采用。即便如今,大部分人在接受語音專業啟蒙教育時,依然還是要通過HTK輔助將理論知識串聯到工程實踐中。可以說,HTK對語音識別行業的發展意義重大。進入21世紀頭幾年,基于GMM-HMM的框架日臻成熟完善,人們對語音識別的要求已經不再滿足于簡單的朗讀和對話,開始將目光著眼于生活中的普通場景,因此研究的重點轉向了具有一定識別難度的日常流利對話、電話通話、會議對話、新聞廣播等一些貼近人類實際應用需求的場景。但是在這些任務上,基于GMM-HMM框架的語音識別系統的表現并不能令人滿意。識別率達到80%左右后,就無法再取得突破。人們發現一直占據主流的GMM-HMM框架也不是wan能的。語音識別是項融合多學科知識的前沿技術,覆蓋了數學與統計學、聲學與語言學、計算機與人工智能等基礎學科。
傳統的人機交互依靠復雜的鍵盤或按鈕來實現,隨著科技的發展,一些新型的人機交互方式也隨之誕生,帶給人們全新的體驗。基于語音識別的人機交互方式是目前熱門的技術之一。但是語音識別功能算法復雜、計算量大,一般在計算機上實現,即使是嵌入式方面,多數方案也需要運算能力強的ARM或DSP,并且外擴RAM、FLASH等資源,增加了硬件成本,這些特點無疑限制了語音識別技術的應用,尤其是嵌入式領域。本系統采用的主控MCU為Atmel公司的ATMEGA128,語音識別功能則采用ICRoute公司的單芯片LD3320。LD3320內部集成優化過的語音識別算法,無需外部FLASH,RAM資源,可以很好地完成非特定人的語音識別任務。1整體方案設計1.1語音識別原理在計算機系統中,語音信號本身的不確定性、動態性和連續性是語音識別的難點。主流的語音識別技術是基于統計模式識別的基本理論。2.1控制器電路控制器選用Atmel公司生產的ATMEGA128芯片,采用先進的RISC結構,內置128KBFLASH,4KBSRAM,4KBE2PROM等豐富資源。該芯片是業界高性能、低功耗的8位微處理器,并在8位單片機市場有著廣泛應用。2.2LD3320語音識別電路LD3320芯片是一款“語音識別”芯片。 識別說話人簡化為已經對特定人語音訓練的系統中翻譯語音的任務,作為安全過程的一部分來驗證說話人的身份。四川語音識別字
通過方向盤上的手指控制,啟動語音識別系統,并通過音頻提示向駕駛員發出信號。新疆語音識別平臺
即識別準確率為,相較于2013年的準確率提升了接近20個百分點。這種水平的準確率已經接近正常人類。2016年10月18日,微軟語音團隊在Switchboard語音識別測試中打破了自己的好成績,將詞錯誤率降低至。次年,微軟語音團隊研究人員通過改進語音識別系統中基于神經網絡的聲學模型和語言模型,在之前的基礎上引入了CNN-BLSTM(ConvolutionalNeuralNetworkCombinedwithBidirectionalLongShort-TermMemory,帶有雙向LSTM的卷積神經網絡)模型,用于提升語音建模的效果。2017年8月20日,微軟語音團隊再次將這一紀錄刷新,在Switchboard測試中將詞錯誤率從,即識別準確率達到,與谷歌一起成為了行業。另外,亞馬遜(Amazon)公司在語音行業可謂后發制人,其在2014年底正式推出了Echo智能音箱,并通過該音箱搭載的Alexa語音助理,為使用者提供種種應用服務。Echo智能音箱一經推出,在消費市場上取得了巨大的成功。如今已成為美國使用廣的智能家居產品,至今累計銷量已超過2000萬臺。投資機構摩根士丹利分析師稱智能音箱是繼iPad之后"成功的消費電子產品"。國內語音識別現狀國內早的語音識別研究開始于1958年,中國科學院聲學所研究出一種電子管電路,該電子管可以識別10個元音。1973年。新疆語音識別平臺