另一方面,與業界對語音識別的期望過高有關,實際上語音識別與鍵盤、鼠標或觸摸屏等應是融合關系,而非替代關系。深度學習技術自2009年興起之后,已經取得了長足進步。語音識別的精度和速度取決于實際應用環境,但在安靜環境、標準口音、常見詞匯場景下的語音識別率已經超過95%,意味著具備了與人類相仿的語言識別能力,而這也是語音識別技術當前發展比較火熱的原因。隨著技術的發展,現在口音、方言、噪聲等場景下的語音識別也達到了可用狀態,特別是遠場語音識別已經隨著智能音箱的興起成為全球消費電子領域應用為成功的技術之一。由于語音交互提供了更自然、更便利、更高效的溝通形式,語音必定將成為未來主要的人機互動接口之一。當然,當前技術還存在很多不足,如對于強噪聲、超遠場、強干擾、多語種、大詞匯等場景下的語音識別還需要很大的提升;另外,多人語音識別和離線語音識別也是當前需要重點解決的問題。雖然語音識別還無法做到無限制領域、無限制人群的應用,但是至少從應用實踐中我們看到了一些希望。本篇文章將從技術和產業兩個角度來回顧一下語音識別發展的歷程和現狀,并分析一些未來趨勢,希望能幫助更多年輕技術人員了解語音行業。大多數人會認為研發語音識別技術是一條艱難的道路,投入會巨大,道路會很漫長。上海云語音識別
但是已經能夠在各個真實場景中普遍應用并且得到規模驗證。更進一步的是,技術和產業之間形成了比較好的正向迭代效應,落地場景越多,得到的真實數據越多,挖掘的用戶需求也更準確,這幫助了語音識別技術快速進步,也基本滿足了產業需求,解決了很多實際問題,這也是語音識別相對其他AI技術為明顯的優勢。不過,我們也要看到,語音識別的內涵必須不斷擴展,狹義語音識別必須走向廣義語音識別,致力于讓機器聽懂人類語言,這才能將語音識別研究帶到更高維度。我們相信,多技術、多學科、多傳感的融合化將是未來人工智能發展的主流趨勢。在這種趨勢下,我們還有很多未來的問題需要探討,比如鍵盤、鼠標、觸摸屏和語音交互的關系怎么變化?搜索、電商、社交是否再次重構?硬件是否逆襲變得比軟件更加重要?產業鏈中的傳感、芯片、操作系統、產品和內容廠商之間的關系又該如何變化?。廣州數字語音識別內容主流語音識別框架還是由 3 個部分組成:聲學模型、語言模型和解碼器,有些框架也包括前端處理和后處理。
在我們的生活中,語言是傳遞信息重要的方式,它能夠讓人們之間互相了解。人和機器之間的交互也是相同的道理,讓機器人知道人類要做什么、怎么做。交互的方式有動作、文本或語音等等,其中語音交互越來越被重視,因為隨著互聯網上智能硬件的普及,產生了各種互聯網的入口方式,而語音是簡單、直接的交互方式,是通用的輸入模式。在1952年,貝爾研究所研制了世界上能識別10個英文數字發音的系統。1960年英國的Denes等人研制了世界上語音識別(ASR)系統。大規模的語音識別研究始于70年代,并在單個詞的識別方面取得了實質性的進展。上世紀80年代以后,語音識別研究的重點逐漸轉向更通用的大詞匯量、非特定人的連續語音識別。90年代以來,語音識別的研究一直沒有太大進步。但是,在語音識別技術的應用及產品化方面取得了較大的進展。自2009年以來,得益于深度學習研究的突破以及大量語音數據的積累,語音識別技術得到了突飛猛進的發展。深度學習研究使用預訓練的多層神經網絡,提高了聲學模型的準確率。微軟的研究人員率先取得了突破性進展,他們使用深層神經網絡模型后,語音識別錯誤率降低了三分之一,成為近20年來語音識別技術方面快的進步。另外,隨著手機等移動終端的普及。
CNN本質上也可以看作是從語音信號中不斷抽取特征的一個過程。CNN相比于傳統的DNN模型,在相同性能情況下,前者的參數量更少。綜上所述,對于建模能力來說,DNN適合特征映射到空間,LSTM具有長短時記憶能力,CNN擅長減少語音信號的多樣性,因此一個好的語音識別系統是這些網絡的組合。端到端時代語音識別的端到端方法主要是代價函數發生了變化,但神經網絡的模型結構并沒有太大變化。總體來說,端到端技術解決了輸入序列的長度遠大于輸出序列長度的問題。端到端技術主要分成兩類:一類是CTC方法,另一類是Sequence-to-Sequence方法。傳統語音識別DNN-HMM架構里的聲學模型,每一幀輸入都對應一個標簽類別,標簽需要反復的迭代來確保對齊更準確。采用CTC作為損失函數的聲學模型序列,不需要預先對數據對齊,只需要一個輸入序列和一個輸出序列就可以進行訓練。CTC關心的是預測輸出的序列是否和真實的序列相近,而不關心預測輸出序列中每個結果在時間點上是否和輸入的序列正好對齊。CTC建模單元是音素或者字,因此它引入了Blank。對于一段語音,CTC**后輸出的是尖峰的序列,尖峰的位置對應建模單元的Label,其他位置都是Blank。語音識別可以作為一種廣義的自然語言處理技術,是用于人與人、人與機器進行更順暢的交流的技術。
在人與機器設備交互中,言語是方便自然并且直接的方式之一。同時隨著技術的進步,越來越多的人們也期望設備能夠具備與人進行言語溝通的能力,因此語音識別這一技術也越來越受到人們關注。尤其隨著深度學習技術應用在語音識別技術中,使得語音識別的性能得到了很大的提升,也使得語音識別技術的普及成為了現實,深圳魚亮科技專業語音識別技術提供商,提供:語音喚醒,語音識別,文字翻譯,AI智能會議,信號處理,降噪等語音識別技術。主要是將人類語音中的詞匯內容轉換為計算機可讀的輸入。浙江語音識別學習
自動語音識別(Automatic Speech Recognition, ASR),也可以簡稱為語音識別。上海云語音識別
DBN),促使了深度神經網絡(DNN)研究的復蘇。2009年,Hinton將DNN應用于語音的聲學建模,在TIMIT上獲得了當時比較好的結果。2011年底,微軟研究院的俞棟、鄧力又把DNN技術應用在了大詞匯量連續語音識別任務上,降低了語音識別錯誤率。從此語音識別進入DNN-HMM時代。DNN-HMM主要是用DNN模型代替原來的GMM模型,對每一個狀態進行建模,DNN帶來的好處是不再需要對語音數據分布進行假設,將相鄰的語音幀拼接又包含了語音的時序結構信息,使得對于狀態的分類概率有了明顯提升,同時DNN還具有強大環境學習能力,可以提升對噪聲和口音的魯棒性。簡單來說,DNN就是給出輸入的一串特征所對應的狀態概率。由于語音信號是連續的,不僅各個音素、音節以及詞之間沒有明顯的邊界,各個發音單位還會受到上下文的影響。雖然拼幀可以增加上下文信息,但對于語音來說還是不夠。而遞歸神經網絡(RNN)的出現可以記住更多歷史信息,更有利于對語音信號的上下文信息進行建模。由于簡單的RNN存在梯度和梯度消散問題,難以訓練,無法直接應用于語音信號建模上,因此學者進一步探索,開發出了很多適合語音建模的RNN結構,其中有名的就是LSTM。
上海云語音識別