內蒙古實時語音識別

來源: 發布時間:2023-12-20

    將匹配度高的識別結果提供給用戶。ASR技術已經被應用到各種智能終端,為人們提供了一種嶄新的人機交互體驗,但多數都是基于在線引擎實現。本文針對離線網絡環境,結合特定領域內的應用場景,提出了一套實用性強,成本較低的語音識別解決方案,實現非特定人連續語音識別功能。第二章本文從方案的主要功能模塊入手,對涉及到的關鍵要素進行詳細的分析描述,同時對實現過程中的關鍵事項進行具體分析,并提出應對措施。第三章根據方案設計語音撥號軟件,并對語音撥號軟件的功能進行科學的測試驗證。1低成本的語音識別解決方案(1)主要功能劃分在特定領域內的語音識別,主要以命令發布為主,以快捷實現人機交互為目的。比如在電話通信領域,我們常以“呼叫某某某”、“幫我查找某某某電話”為語音輸入,這些輸入語音語法結構單一,目的明確,場景性較強,本方案決定采用命令模式實現語音識別功能。方案主要包括四個功能模塊:語音控制模塊、音頻采集模塊、語音識別離線引擎和應用數據庫模塊,各模塊的主要功能及要求如圖1所示。圖1低成本語音識別解決方案功能模塊語音控制模塊作為方案實現的模塊,主要用于實現語音識別的控制管理功能。語音識別的狹義語音識別必須走向廣義語音識別,致力讓機器聽懂人類語言,才能將語音識別研究帶到更高維度。內蒙古實時語音識別

    并能產生興趣投身于這個行業。語音識別的技術歷程現代語音識別可以追溯到1952年,Davis等人研制了世界上個能識別10個英文數字發音的實驗系統,從此正式開啟了語音識別的進程。語音識別發展到已經有70多年,但從技術方向上可以大體分為三個階段。下圖是從1993年到2017年在Switchboard上語音識別率的進展情況,從圖中也可以看出1993年到2009年,語音識別一直處于GMM-HMM時代,語音識別率提升緩慢,尤其是2000年到2009年語音識別率基本處于停滯狀態;2009年隨著深度學習技術,特別是DNN的興起,語音識別框架變為DNN-HMM,語音識別進入了DNN時代,語音識別精細率得到了提升;2015年以后,由于“端到端”技術興起,語音識別進入了百花齊放時代,語音界都在訓練更深、更復雜的網絡,同時利用端到端技術進一步大幅提升了語音識別的性能,直到2017年微軟在Swichboard上達到詞錯誤率,從而讓語音識別的準確性超越了人類,當然這是在一定限定條件下的實驗結果,還不具有普遍代表性。GMM-HMM時代70年代,語音識別主要集中在小詞匯量、孤立詞識別方面,使用的方法也主要是簡單的模板匹配方法,即首先提取語音信號的特征構建參數模板,然后將測試語音與參考模板參數進行一一比較和匹配。

     湖南語音識別教程語音識別還無法做到無限制領域、無限制人群的應用,但是至少從應用實踐中我們看到了一些希望。

    Hinton提出深度置信網絡(DBN),促使了深度神經網絡(DNN)研究的復蘇。2009年,Hinton將DNN應用于語音的聲學建模,在TIMIT上獲得了當時好的結果。2011年底,微軟研究院的俞棟、鄧力又把DNN技術應用在了大詞匯量連續語音識別任務上,降低了語音識別錯誤率。從此語音識別進入DNN-HMM時代。DNN-HMM主要是用DNN模型代替原來的GMM模型,對每一個狀態進行建模,DNN帶來的好處是不再需要對語音數據分布進行假設,將相鄰的語音幀拼接又包含了語音的時序結構信息,使得對于狀態的分類概率有了明顯提升,同時DNN還具有強大環境學習能力,可以提升對噪聲和口音的魯棒性。簡單來說,DNN就是給出輸入的一串特征所對應的狀態概率。由于語音信號是連續的,各個音素、音節以及詞之間沒有明顯的邊界,各個發音單位還會受到上下文的影響。雖然拼幀可以增加上下文信息,但對于語音來說還是不夠。而遞歸神經網絡(RNN)的出現可以記住更多歷史信息,更有利于對語音信號的上下文信息進行建模。由于簡單的RNN存在梯度炸和梯度消散問題,難以訓練,無法直接應用于語音信號建模上,因此學者進一步探索,開發出了很多適合語音建模的RNN結構,其中有名的就是LSTM。

    而解決后者則更像應用商店的開發者。這里面蘊含著巨大的挑戰和機遇。在過去功能型操作系統的打造過程中,國內的程序員們更多的是使用者的角色,但智能型操作系統雖然也可以參照其他,但這次必須自己來從頭打造完整的系統。(國外巨頭不管在中文相關的技術上還是內容整合上事實上都非常薄弱,不存在國內市場的可能性)隨著平臺服務商兩邊的問題解決的越來越好,基礎的計算模式則會逐漸發生改變,人們的數據消費模式會與不同。個人的計算設備(當前主要是手機、筆記本、Pad)會根據不同場景進一步分化。比如在車上、家里、工作場景、路上、業務辦理等會根據地點和業務進行分化。但分化的同時背后的服務則是統一的,每個人可以自由的根據場景做設備的遷移,背后的服務雖然會針對不同的場景進行優化,但在個人偏好這樣的點上則是統一的。人與數字世界的接口,在現在越來越統一于具體的產品形態(比如手機),但隨著智能型系統的出現,這種統一則會越來越統一于系統本身。作為結果這會帶來數據化程度的持續加深,我們越來越接近一個數據化的世界。總結從技術進展和產業發展來看,語音識別雖然還不能解決無限制場景、無限制人群的通用識別問題。在語音對話場景采買一句話識別(短語音)接口或者實時語音識別(長語音流)接口,都屬于流式語音識別。

    DBN),促使了深度神經網絡(DNN)研究的復蘇。2009年,Hinton將DNN應用于語音的聲學建模,在TIMIT上獲得了當時比較好的結果。2011年底,微軟研究院的俞棟、鄧力又把DNN技術應用在了大詞匯量連續語音識別任務上,降低了語音識別錯誤率。從此語音識別進入DNN-HMM時代。DNN-HMM主要是用DNN模型代替原來的GMM模型,對每一個狀態進行建模,DNN帶來的好處是不再需要對語音數據分布進行假設,將相鄰的語音幀拼接又包含了語音的時序結構信息,使得對于狀態的分類概率有了明顯提升,同時DNN還具有強大環境學習能力,可以提升對噪聲和口音的魯棒性。簡單來說,DNN就是給出輸入的一串特征所對應的狀態概率。由于語音信號是連續的,不僅各個音素、音節以及詞之間沒有明顯的邊界,各個發音單位還會受到上下文的影響。雖然拼幀可以增加上下文信息,但對于語音來說還是不夠。而遞歸神經網絡(RNN)的出現可以記住更多歷史信息,更有利于對語音信號的上下文信息進行建模。由于簡單的RNN存在梯度和梯度消散問題,難以訓練,無法直接應用于語音信號建模上,因此學者進一步探索,開發出了很多適合語音建模的RNN結構,其中有名的就是LSTM。


除了傳統語音識別技術之外,基于深度學習的語音識別技術也逐漸發展起來。貴州語音識別源碼

語音識別,通常稱為自動語音識別。內蒙古實時語音識別

    它將執行以下操作:進行聲音輸入:“嘿Siri,現在幾點了?”通過聲學模型運行語音數據,將其分解為語音部分?!ねㄟ^語言模型運行該數據。輸出文本數據:“嘿Siri,現在幾點了?”在這里,值得一提的是,如果自動語音識別系統是語音用戶界面的一部分,則ASR模型將不是***在運行的機器學習模型。許多自動語音識別系統都與自然語言處理(NLP)和文本語音轉換(TTS)系統配合使用,以執行其給定的角色。也就是說,深入研究語音用戶界面本身就是個完整的話題。要了解更多信息,請查看此文章。那么,現在知道了ASR系統如何運作,但需要構建什么?建立ASR系統:數據的重要性ASR系統應該具有靈活性。它需要識別各種各樣的音頻輸入(語音樣本),并根據該數據做出準確的文本輸出,以便做出相應的反應。為實現這一點,ASR系統需要的數據是標記的語音樣本和轉錄形式。比這要復雜一些(例如,數據標記過程非常重要且經常被忽略),但為了讓大家明白,在此將其簡化。ASR系統需要大量的音頻數據。為什么?因為語言很復雜。對同一件事有很多種講述方式,句子的意思會隨著單詞的位置和重點而改變。還考慮到世界上有很多不同的語言,在這些語言中。 內蒙古實時語音識別

欧美乱妇精品无乱码亚洲欧美,日本按摩高潮a级中文片三,久久男人电影天堂92,好吊妞在线视频免费观看综合网
色综合久久中文字幕有码 | 中文不打码网站 | 最新国产精品亚洲 | 亚洲妇女性爱视频在线 | 亚洲国产片在线观看 | 亚洲无马在线不卡 |