將相似度高的模式所屬的類別作為識別中間候選結果輸出。為了提高識別的正確率,在后處理模塊中對上述得到的候選識別結果繼續處理,包括通過Lattice重打分融合更高元的語言模型、通過置信度度量得到識別結果的可靠程度等。終通過增加約束,得到更可靠的識別結果。語音識別的技術有哪些?語音識別技術=早期基于信號處理和模式識別+機器學習+深度學習+數值分析+高性能計算+自然語言處理語音識別技術的發展可以說是有一定的歷史背景,上世紀80年代,語音識別研究的重點已經開始逐漸轉向大詞匯量、非特定人連續語音識別。到了90年代以后,語音識別并沒有什么重大突破,直到大數據與深度神經網絡時代的到來,語音識別技術才取得了突飛猛進的進展。語音識別技術的發展語音識別技術起始于20世紀50年代。這一時期,語音識別的研究主要集中在對元音、輔音、數字以及孤立詞的識別。20世紀60年代,語音識別研究取得實質性進展。線性預測分析和動態規劃的提出較好地解決了語音信號模型的產生和語音信號不等長兩個問題,并通過語音信號的線性預測編碼,有效地解決了語音信號的特征提取。20世紀70年代,語音識別技術取得突破性進展。基于動態規劃的動態時間規整(DynamicTimeWarp?ing。語音識別在移動端和音箱的應用上為火熱,語音聊天機器人、語音助手等軟件層出不窮。深圳新一代語音識別特征
技術和產業之間形成了比較好的正向迭代效應,落地場景越多,得到的真實數據越多,挖掘的用戶需求也更準確,這幫助了語音識別技術快速進步,也基本滿足了產業需求,解決了很多實際問題,這也是語音識別相對其他AI技術為明顯的優勢。不過,我們也要看到,語音識別的內涵必須不斷擴展,狹義語音識別必須走向廣義語音識別,致力于讓機器聽懂人類語言,這才能將語音識別研究帶到更高維度。我們相信,多技術、多學科、多傳感的融合化將是未來人工智能發展的主流趨勢。在這種趨勢下,我們還有很多未來的問題需要探討,比如鍵盤、鼠標、觸摸屏和語音交互的關系怎么變化?搜索、電商、社交是否再次重構?硬件是否逆襲變得比軟件更加重要?產業鏈中的傳感、芯片、操作系統、產品和內容廠商之間的關系又該如何變化?深圳新一代語音識別特征主流語音識別框架還是由 3 個部分組成:聲學模型、語言模型和解碼器,有些框架也包括前端處理和后處理。
因此在平臺服務上反倒是可以主推一些更為面向未來、有特色的基礎服務,比如兼容性方面新興公司做的會更加徹底,這種兼容性對于一套產品同時覆蓋國內國外市場是相當有利的。類比過去的Android,語音交互的平臺提供商們其實面臨更大的挑戰,發展過程可能會更加的曲折。過去經常被提到的操作系統的概念在智能語音交互背景下事實上正被賦予新的內涵,它日益被分成兩個不同但必須緊密結合的部分。過去的Linux以及各種變種承擔的是功能型操作系統的角色,而以Alexa的新型系統則承擔的則是智能型系統的角色。前者完成完整的硬件和資源的抽象和管理,后者則讓這些硬件以及資源得到具體的應用,兩者相結合才能輸出終用戶可感知的體驗。功能型操作系統和智能型操作系統注定是一種一對多的關系,不同的AIoT硬件產品在傳感器(深度攝像頭、雷達等)、顯示器上(有屏、無屏、小屏、大屏等)具有巨大差異,這會導致功能型系統的持續分化(可以和Linux的分化相對應)。這反過來也就意味著一套智能型系統,必須同時解決與功能型系統的適配以及對不同后端內容以及場景進行支撐的雙重責任。這兩邊在操作上,屬性具有巨大差異。解決前者需要參與到傳統的產品生產制造鏈條中去。
Bothlent(?亮)是專注于提供AI?程化的平臺,旨在匯聚?批跨?業的專業前列?才,為??AI?業B端客戶、IT從業者、在校?學?提供?程化加速?案、教育培訓和咨詢等服務。?亮科技關注語?識別、??智能、機器學習等前沿科技,致?打造國內?流AI技術服務商品牌。公司秉承“價值驅動連接、連接創造價值”的理念,重品牌,產品發布以來迅速在市場上崛起,市場占有率不斷攀升,并快速取得包括科?訊?、國芯、FireFly等平臺及技術社區在內的渠道合作。未來,我們將進一步加大投入智能識別、大數據、云計算、AI工業4.0前沿技術,融合智慧城市、智慧社區、養老服務等應用組合模式,締造AI智能機器人服務新時代。哪些領域又運用到語音識別技術呢?
機器必然要超越人類的五官,能夠看到人類看不到的世界,聽到人類聽不到的世界。語音識別的產業歷程語音識別這半個多世紀的產業歷程中,其中的共有三個關鍵節點,兩個和技術有關,一個和應用有關。關鍵節點是1988年的一篇博士論文,開發了基于隱馬爾科夫模型(HMM)的語音識別系統——Sphinx,當時實現這一系統的正是現在的投資人李開復。從1986年到2010年,雖然混合高斯模型效果得到持續改善,而被應用到語音識別中,并且確實提升了語音識別的效果,但實際上語音識別已經遭遇了技術天花板,識別的準確率很難超過90%。很多人可能還記得,在1998年前后IBM、微軟都曾經推出和語音識別相關的軟件,但終并未取得成功。第二個關鍵節點是2009年深度學習被系統應用到語音識別領域中。這導致識別的精度再次大幅提升,終突破90%,并且在標準環境下逼近98%。有意思的是,盡管技術取得了突破,也涌現出了一些與此相關的產品,比如Siri、GoogleAssistant等,但與其引起的關注度相比,這些產品實際取得的成績則要遜色得多。Siri剛一面世的時候,時任GoogleCEO的施密特就高呼,這會對Google的搜索業務產生根本性威脅,但事實上直到AmazonEcho的面世,這種根本性威脅才真的有了具體的載體。信號處理和特征提取可以視作音頻數據的預處理部分,一般來說,一段高保真、無噪聲的語言是非常難得的。深圳新一代語音識別特征
語音識別包括兩個階段:訓練和識別。深圳新一代語音識別特征
主流的語音識別系統框架03語音識別發展歷史羅馬城不是***建成的,語音識別近些年的爆發也并非一朝一夕可以做到的,而是經過了一段漫長的發展歷程。從初的語音識別雛形,到高達90%以上準確率的現在,經過了大約100年的時間。在電子計算機被發明之前的20世紀20年dai,sheng產的一種叫作"RadioRex"的玩具狗被認為是世界上早的語音識別器。每當有人喊出"Rex"這個詞時,這只狗就從底座上彈出來,以此回應人類的"呼喚"。但是實際上,它使用的技術并不是真正意義上的語音識別技術,而是使用了一個特殊的彈簧,每當該彈簧接收到頻率為500Hz的聲音時,它就會被自動釋放,而500Hz恰好就是人們喊出"Rex"時的***個共振峰的頻率。"RadioRex"玩具狗被視為語音識別的雛形。真正意義上的語音識別研究起源于20世紀50年代。先是美國的AT&TBell實驗室的Davis等人成功開發出了世界上di一個孤立詞語音識別系統——Audry系統,該系統能夠識別10個英文數字的發音,正確率高達98%。1956年,美國普林斯頓大學的實驗室使用模擬濾波器組提取出元音的頻譜后,通過模板匹配。建立了針對特定說話人的包括10個單音節詞的語音識別系統。1959年。深圳新一代語音識別特征