在人與機器設備交互中,言語是方便自然并且直接的方式之一。同時隨著技術的進步,越來越多的人們也期望設備能夠具備與人進行言語溝通的能力,因此語音識別這一技術也越來越受到人們關注。尤其隨著深度學習技術應用在語音識別技術中,使得語音識別的性能得到了很大的提升,也使得語音識別技術的普及成為了現實,深圳魚亮科技專業語音識別技術提供商,提供:語音喚醒,語音識別,文字翻譯,AI智能會議,信號處理,降噪等語音識別技術。隨著人工智能的火熱,現階段越來越多的產品都想要加入語音功能。深圳未來語音識別介紹
使用語音識別功能之前,先按照說明書安裝百度語音輸入軟件。在瀏覽器中輸入VOICEM380底部的軟件下載鏈接,就可以直接進入軟件下載界面了,清晰簡單,自行選擇win版/Mac版,跟著界面提示一部一部操作就ok。中間綁定手機/郵箱賬號,接收驗證碼,輸入VOICEM380底部的***碼。安裝流程就結束了,讓我們來試試神奇的語音識別~先試了一下普通話模式,據官方說,每分鐘可聽寫約400字,準確率高達98%。特意找了一段聽起來十分晦澀、拗口的話來測試,先清點VOICEM380的語音識別鍵。此時電腦右下角出現小彈框,進入語音接收階段。以正常語速隨便讀了一下,轉化效果非常好,實現零誤差;而且對于智能語音識別中的“智能”也有了很好的詮釋,如動圖,有些人名、專有名詞不能在一時間正確輸出,但會隨著語音的不斷輸入,不斷修正、調整前面的內容;輸入結束后,可以再次輕點VOICEM380的語音識別鍵,進入“識別”階段,個人感覺,更像是對于剛剛輸出的內容進行后的整合;如果剛剛的輸出有出現標點錯亂、錯別字的現象,會在這個識別階段,統一調整,終整合后輸出的內容,正確率十分ok。接著試了一下中譯英模式和英譯中模式,整體操作和普通話模式一致。雖然涉及了不同語種之間的翻譯轉化。廣西語音識別公司聲學模型是語音識別系統中為重要的部分之一。
3)上述兩個問題的共性是目前的深度學習用到了語音信號各個頻帶的能量信息,而忽略了語音信號的相位信息,尤其是對于多通道而言,如何讓深度學習更好的利用相位信息可能是未來的一個方向。(4)另外,在較少數據量的情況下,如何通過遷移學習得到一個好的聲學模型也是研究的熱點方向。例如方言識別,若有一個比較好的普通話聲學模型,如何利用少量的方言數據得到一個好的方言聲學模型,如果做到這點將極大擴展語音識別的應用范疇。這方面已經取得了一些進展,但更多的是一些訓練技巧,距離目標還有一定差距。(5)語音識別的目的是讓機器可以理解人類,因此轉換成文字并不是終的目的。如何將語音識別和語義理解結合起來可能是未來更為重要的一個方向。語音識別里的LSTM已經考慮了語音的歷史時刻信息,但語義理解需要更多的歷史信息才能有幫助,因此如何將更多上下文會話信息傳遞給語音識別引擎是一個難題。(6)讓機器聽懂人類語言,靠聲音信息還不夠,“聲光電熱力磁”這些物理傳感手段,下一步必然都要融合在一起,只有這樣機器才能感知世界的真實信息,這是機器能夠學習人類知識的前提條件。而且,機器必然要超越人類的五官,能夠看到人類看不到的世界。
語音識別自半個世紀前誕生以來,一直處于不溫不火的狀態,直到2009年深度學習技術的長足發展才使得語音識別的精度提高,雖然還無法進行無限制領域、無限制人群的應用,但也在大多數場景中提供了一種便利高效的溝通方式。本篇文章將從技術和產業兩個角度來回顧一下語音識別發展的歷程和現狀,并分析一些未來趨勢,希望能幫助更多年輕技術人員了解語音行業,并能產生興趣投身于這個行業。語音識別,通常稱為自動語音識別,英文是AutomaticSpeechRecognition,縮寫為ASR,主要是將人類語音中的詞匯內容轉換為計算機可讀的輸入,一般都是可以理解的文本內容,也有可能是二進制編碼或者字符序列。但是,我們一般理解的語音識別其實都是狹義的語音轉文字的過程,簡稱語音轉文本識別(SpeechToText,STT)更合適,這樣就能與語音合成(TextToSpeech,TTS)對應起來。語音識別是一項融合多學科知識的前沿技術,覆蓋了數學與統計學、聲學與語言學、計算機與人工智能等基礎學科和前沿學科,是人機自然交互技術中的關鍵環節。但是,語音識別自誕生以來的半個多世紀,一直沒有在實際應用過程得到普遍認可,一方面這與語音識別的技術缺陷有關,其識別精度和速度都達不到實際應用的要求。
語料的標注需要長期的積累和沉淀,大規模語料資源的積累需要被提高到戰略高度。
另一方面,與業界對語音識別的期望過高有關,實際上語音識別與鍵盤、鼠標或觸摸屏等應是融合關系,而非替代關系。深度學習技術自2009年興起之后,已經取得了長足進步。語音識別的精度和速度取決于實際應用環境,但在安靜環境、標準口音、常見詞匯場景下的語音識別率已經超過95%,意味著具備了與人類相仿的語言識別能力,而這也是語音識別技術當前發展比較火熱的原因。隨著技術的發展,現在口音、方言、噪聲等場景下的語音識別也達到了可用狀態,特別是遠場語音識別已經隨著智能音箱的興起成為全球消費電子領域應用為成功的技術之一。由于語音交互提供了更自然、更便利、更高效的溝通形式,語音必定將成為未來主要的人機互動接口之一。當然,當前技術還存在很多不足,如對于強噪聲、超遠場、強干擾、多語種、大詞匯等場景下的語音識別還需要很大的提升;另外,多人語音識別和離線語音識別也是當前需要重點解決的問題。雖然語音識別還無法做到無限制領域、無限制人群的應用,但是至少從應用實踐中我們看到了一些希望。本篇文章將從技術和產業兩個角度來回顧一下語音識別發展的歷程和現狀,并分析一些未來趨勢,希望能幫助更多年輕技術人員了解語音行業。
語音識別還無法做到無限制領域、無限制人群的應用,但是至少從應用實踐中我們看到了一些希望。深圳未來語音識別介紹
語音識別,通常稱為自動語音識別。深圳未來語音識別介紹
特別是在Encoder層,將傳統的RNN完全用Attention替代,從而在機器翻譯任務上取得了更優的結果,引起了極大關注。隨后,研究人員把Transformer應用到端到端語音識別系統中,也取得了非常明顯的改進效果。另外,生成式對抗網絡(GenerativeAdversarialNetwork,GAN)是近年來無監督學習方面具前景的一種新穎的深度學習模型,"GenerativeAdversarialNets",文中提出了一個通過對抗過程估計生成模型框架的全新方法。通過對抗學習,GAN可用于提升語音識別的噪聲魯棒性。GAN網絡在無監督學習方面展現出了較大的研究潛質和較好的應用前景。從一個更高的角度來看待語音識別的研究歷程,從HMM到GMM,到DNN,再到CTC和Attention,這個演進過程的主線是如何利用一個網絡模型實現對聲學模型層面更準的刻畫。換言之,就是不斷嘗試更好的建模方式以取代基于統計的建模方式。在2010年以前,語音識別行業水平普遍還停留在80%的準確率以下。機器學習相關模型算法的應用和計算機性能的增強,帶來了語音識別準確率的大幅提升。到2015年,識別準確率就達到了90%以上。谷歌公司在2013年時,識別準確率還只有77%,然而到2017年5月時,基于谷歌深度學習的英語語音識別錯誤率已經降低到。深圳未來語音識別介紹