黑龍江云語音識別

來源: 發布時間:2023-02-27

    包括語法詞典的構建、語音識別引擎的初始化配置、音頻數據的采集控制和基本語義的解析等;應用數據庫是用戶的數據中心,作為語音識別數據的源頭,語音控制模塊從中提取用戶關鍵數據,并以此為基礎構建本地語法詞典;語音識別離線引擎是語音轉換為文字的關鍵模塊,支持在離線的情況下,根據本地構建的語法網絡,完成非特定人連續語音識別功能,同時具備語音數據前、后端點檢測、聲音除噪處理、識別門限設置等基本功能;音頻采集在本方案中屬于輔助模塊,具備靈活、便捷的語音控制接口,支持在不同采樣要求和采樣環境中,對實時音頻數據的采集。(2)關鍵要素分析本方案工作于離線的網絡環境中,語音數據的采集、識別和語義的解析等功能都在終端完成,因此設備性能的優化和語音識別的準度尤為重要。在具體的實現過程中,存在以下要素需要重點關注。(1)用戶構建的語法文檔在引擎系統初始化時,編譯成語法網絡送往語音識別器,語音識別器根據語音數據的特征信息,在識別網絡上進行路徑匹配,識別并提取用戶語音數據的真實信息,因此語法文檔的語法結構是否合理,直接關系到識別準確率的高低;(2)應用數據庫是作為語音識別數據的源頭,其中的關鍵數據如果有變化。該系統分析該人的特定聲音,并使用它來微調對該人語音的識別,從而提高準確性。黑龍江云語音識別

    LSTM通過輸入門、輸出門和遺忘門可以更好的控制信息的流動和傳遞,具有長短時記憶能力。雖然LSTM的計算復雜度會比DNN增加,但其整體性能比DNN有相對20%左右穩定提升。BLSTM是在LSTM基礎上做的進一步改進,不僅考慮語音信號的歷史信息對當前幀的影響,還要考慮未來信息對當前幀的影響,因此其網絡中沿時間軸存在正向和反向兩個信息傳遞過程,這樣該模型可以更充分考慮上下文對于當前語音幀的影響,能夠極大提高語音狀態分類的準確率。BLSTM考慮未來信息的代價是需要進行句子級更新,模型訓練的收斂速度比較慢,同時也會帶來解碼的延遲,對于這些問題,業屆都進行了工程優化與改進,即使現在仍然有很多大公司使用的都是該模型結構。圖像識別中主流的模型就是CNN,而語音信號的時頻圖也可以看作是一幅圖像,因此CNN也被引入到語音識別中。要想提高語音識別率,就需要克服語音信號所面臨的多樣性,包括說話人自身、說話人所處的環境、采集設備等,這些多樣性都可以等價為各種濾波器與語音信號的卷積。而CNN相當于設計了一系列具有局部關注特性的濾波器,并通過訓練學習得到濾波器的參數,從而從多樣性的語音信號中抽取出不變的部分。

    黑龍江云語音識別我們一般理解的語音識別其實都是狹義的語音轉文字的過程,簡稱語音轉文本識別。

    它在某些實際場景下的識別率無法達到人們對實際應用的要求和期望,這個階段語音識別的研究陷入了瓶頸期。第三階段:深度學習(DNN-HMM,E2E)2006年,變革到來。Hinton在全世界學術期刊Science上發表了論文,di一次提出了"深度置信網絡"的概念。深度置信網絡與傳統訓練方式的不同之處在于它有一個被稱為"預訓練"(pre-training)的過程,其作用是為了讓神經網絡的權值取到一個近似優解的值,之后使用反向傳播算法(BP)或者其他算法進行"微調"(fine-tuning),使整個網絡得到訓練優化。Hinton給這種多層神經網絡的相關學習方法賦予了一個全新的名詞——"深度學習"(DeepLearning,DL)。深度學習不*使深層的神經網絡訓練變得更加容易,縮短了網絡的訓練時間,而且還大幅度提升了模型的性能。以這篇劃時代的論文的發表為轉折點,從此,全世界再次掀起了對神經網絡的研究熱潮,揭開了屬于深度學習的時代序幕。在2009年,Hinton和他的學生Mohamed將深層神經網絡(DNN)應用于聲學建模,他們的嘗試在TIMIT音素識別任務上取得了成功。然而TIMIT數據庫包含的詞匯量較小。在面對連續語音識別任務時還往往達不到人們期望的識別詞和句子的正確率。2012年。

    Hinton提出深度置信網絡(DBN),促使了深度神經網絡(DNN)研究的復蘇。2009年,Hinton將DNN應用于語音的聲學建模,在TIMIT上獲得了當時好的結果。2011年底,微軟研究院的俞棟、鄧力又把DNN技術應用在了大詞匯量連續語音識別任務上,降低了語音識別錯誤率。從此語音識別進入DNN-HMM時代。DNN-HMM主要是用DNN模型代替原來的GMM模型,對每一個狀態進行建模,DNN帶來的好處是不再需要對語音數據分布進行假設,將相鄰的語音幀拼接又包含了語音的時序結構信息,使得對于狀態的分類概率有了明顯提升,同時DNN還具有強大環境學習能力,可以提升對噪聲和口音的魯棒性。簡單來說,DNN就是給出輸入的一串特征所對應的狀態概率。由于語音信號是連續的,各個音素、音節以及詞之間沒有明顯的邊界,各個發音單位還會受到上下文的影響。雖然拼幀可以增加上下文信息,但對于語音來說還是不夠。而遞歸神經網絡(RNN)的出現可以記住更多歷史信息,更有利于對語音信號的上下文信息進行建模。由于簡單的RNN存在梯度炸和梯度消散問題,難以訓練,無法直接應用于語音信號建模上,因此學者進一步探索,開發出了很多適合語音建模的RNN結構,其中有名的就是LSTM。實時語音識別基于DeepPeak2的端到端建模,將音頻流實時識別為文字,并返回每句話的開始和結束時間。

    特別是在Encoder層,將傳統的RNN完全用Attention替代,從而在機器翻譯任務上取得了更優的結果,引起了極大關注。隨后,研究人員把Transformer應用到端到端語音識別系統中,也取得了非常明顯的改進效果。另外,生成式對抗網絡(GenerativeAdversarialNetwork,GAN)是近年來無監督學習方面具前景的一種新穎的深度學習模型,"GenerativeAdversarialNets",文中提出了一個通過對抗過程估計生成模型框架的全新方法。通過對抗學習,GAN可用于提升語音識別的噪聲魯棒性。GAN網絡在無監督學習方面展現出了較大的研究潛質和較好的應用前景。從一個更高的角度來看待語音識別的研究歷程,從HMM到GMM,到DNN,再到CTC和Attention,這個演進過程的主線是如何利用一個網絡模型實現對聲學模型層面更準的刻畫。換言之,就是不斷嘗試更好的建模方式以取代基于統計的建模方式。在2010年以前,語音識別行業水平普遍還停留在80%的準確率以下。機器學習相關模型算法的應用和計算機性能的增強,帶來了語音識別準確率的大幅提升。到2015年,識別準確率就達到了90%以上。谷歌公司在2013年時,識別準確率還只有77%,然而到2017年5月時,基于谷歌深度學習的英語語音識別錯誤率已經降低到。語音識別是門綜合性學科,包括聲學、語音學、語言學、信號處理、概率統計、信息論、模式識別和深度學習等。黑龍江云語音識別

語音識別應用包括語音用戶界面,例如語音撥號、呼叫路由、多用戶設備控制、搜索、簡單的數據輸入等。黑龍江云語音識別

    在我們的生活中,語言是傳遞信息重要的方式,它能夠讓人們之間互相了解。人和機器之間的交互也是相同的道理,讓機器人知道人類要做什么、怎么做。交互的方式有動作、文本或語音等等,其中語音交互越來越被重視,因為隨著互聯網上智能硬件的普及,產生了各種互聯網的入口方式,而語音是簡單、直接的交互方式,是通用的輸入模式。在1952年,貝爾研究所研制了世界上能識別10個英文數字發音的系統。1960年英國的Denes等人研制了世界上語音識別(ASR)系統。大規模的語音識別研究始于70年代,并在單個詞的識別方面取得了實質性的進展。上世紀80年代以后,語音識別研究的重點逐漸轉向更通用的大詞匯量、非特定人的連續語音識別。90年代以來,語音識別的研究一直沒有太大進步。但是,在語音識別技術的應用及產品化方面取得了較大的進展。自2009年以來,得益于深度學習研究的突破以及大量語音數據的積累,語音識別技術得到了突飛猛進的發展。深度學習研究使用預訓練的多層神經網絡,提高了聲學模型的準確率。微軟的研究人員率先取得了突破性進展,他們使用深層神經網絡模型后,語音識別錯誤率降低了三分之一,成為近20年來語音識別技術方面快的進步。另外,隨著手機等移動終端的普及。黑龍江云語音識別

深圳魚亮科技有限公司主營品牌有Bothlent,發展規模團隊不斷壯大,該公司服務型的公司。深圳魚亮科技是一家有限責任公司(自然)企業,一直“以人為本,服務于社會”的經營理念;“誠守信譽,持續發展”的質量方針。公司業務涵蓋智能家居,語音識別算法,機器人交互系統,降噪,價格合理,品質有保證,深受廣大客戶的歡迎。深圳魚亮科技將以真誠的服務、創新的理念、***的產品,為彼此贏得全新的未來!

欧美乱妇精品无乱码亚洲欧美,日本按摩高潮a级中文片三,久久男人电影天堂92,好吊妞在线视频免费观看综合网
亚洲中文字幕永久有效 | 婷婷精品视频在线中文字幕 | 九九国产精品视频 | 久久精品国产亚洲777 | 日韩国产欧美二区手机在线 | 色吧福利视频导航 |