基于數據的故障檢測與診斷方法能夠對海量的工業數據進行統計分析和特征提取,將系統的狀態分為正常運行狀態和故障狀態。故障檢測是判斷系統是否處于預期的正常運行狀態,判斷系統是否發生異常故障,相當于一個二分類任務。故障診斷是在確定發生故障的時候判斷系統處于哪一種故障狀態,相當于一個多分類任務。因此,故障檢測和診斷技術研究類似于模式識別,分為4個的步驟:數據獲取、特征提取、特征選擇和特征分類。1)數據獲取步驟是從過程系統收集可能影響過程狀態的信號,包括溫度、流量等過程變量;2)特征提取步驟是將采集的原始信號映射為有辨識度的狀態信息;3)特征選擇步驟是將與狀態變化相關的變量提取出來;4)特征分類步驟是通過算法將前幾步中選擇的特征進行故障檢測與診斷。在大數據這一背景下,傳統的基于數據的故障檢測與診斷方法被廣泛應用,但是,這些方法有一些共同的缺點:特征提取需要大量的知識和信號處理技術,并且對于不同的任務,沒有統一的程序來完成。此外,常規的基于機器學習的方法結構較淺,在提取信號的高維非線性關系方面能力有限。通過在線監測系統來實現,實時地收集和分析電機運行數據。通過電機狀態監測,可以提高電機的可靠性。降噪監測技術
電機監控系統適用于石油、化工、電力、煤炭、冶金、造紙、水泥等行業,可以實時對低壓電動機的運行狀態進行監測,對電機各類故障進行監測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機節能提供依據,并可實現電機節能管理。系統特點1)實時監測電機回路石化、電力、水泥等電機用量大戶,需要對電機進行實時監測,監測內容包括電機的電流、電壓、電能、頻率、電機狀態(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數進行監測,例如溫度、壓力等。本系統不僅可以監測電機電壓、電流還能做能耗統計,工藝參數監測,可以大幅提高企業自動化程度。2)集中監控,利于節能馬達監控系統對用電大戶電機進行實時能耗監測,監測到的數據可以作為節能依據,并可通過系統進行節能控制,利于電機節能應用。3)提高自動化水平.電機監控系統是應用電力自動化技術、計算機技術和信息傳輸技術,集保護、監測、控制、通信等功能于一體的綜合系統,紹興動力設備監測應用利用數據分析和機器學習算法處理監測數據,建立模型以預測電機的壽命和性能。
現代電力系統中發電機單機容量越大型發電機在電力生產中處于主力位置,同時大型發電機由于造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國今后很長一段時間內的缺電、用電緊張的狀況而言,發電機的年運行小時數目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監測與診斷,做到早期預警以防止事故發生或擴大具有重要的現實意義。通常對發電機的“監測”與“診斷”在內容上并無明確的劃分界限,可以說監測的數據和結果即為診斷的依據。監測利用各種傳感器在電機運行時對電機的狀態提取相關數據。故障診斷使用計算機及其相應智能軟件,根據傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態監測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態監測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內部實際的運行狀況,合理的安排檢修工作,實現所謂“預知”維修。
電機等振動設備在運行中,伴隨著一些安全問題,振動數據會發生變化,如果不及時發現,容易導致起火或,造成大量的財產損失,而這些問題具有突發性和不準確性,難以預知,應對這種情況,需要一種手段去解決。無線振動傳感器直接讀取原始加速度數據,準確可靠。傳感器采用無線通訊方式,低功耗設計,一次性鋰亞電池供電,具有容量大、耐高溫、不宜爆等特點,工作原理:將傳感器分布式安裝在各類電機、風機、振動平臺、回轉窯、傳送設備等需要振動監測的設備上實時采集振動數據,然后通過無線方式將數據發送給采集端,采集端將數據解析、顯示或傳輸。系統能實時在線監測出設備異常,發出預警,避免事故發生。產品特點(1)實時性:系統實時在線監測電機等振動參數,避免了由于電機突然缺相、線圈故障,堵轉、固定螺栓松動、負載過高和人為錯誤操作等發生的事故。(2)便捷性:系統采用無線傳輸方式,傳感器安裝,解決了以往因為空間狹小、不能布線、安裝成本高等問題。(3)可靠性:系統采用先進成熟的傳感技術和無線傳輸技術,抗干擾力強,傳輸距離遠,讀數準確,可靠性高。電機的運行狀態涉及多個參數,包括振動、溫度、電流、電壓等。同時監測和分析這些多參數復雜性是一個挑戰。
電機狀態監測技術是一種了解和掌握電機在運行過程中的狀態,以及確定其整體或局部是否有異常或故障的技術。這種技術可以早期發現故障及其原因,并預測故障的發展趨勢,從而為設備的維護、修理和更換提供決策依據。電機狀態監測技術主要包括以下幾種:振動監測技術:通過對電機運行過程中產生的振動信號進行測量和分析,可以判斷電機是否存在故障。常見的振動監測方法包括加速度計法、速度計法和位移計法等。溫度監測技術:通過埋置在電機內部的溫度傳感器,對電機運行過程中的溫度信號進行檢測和分析,可以判斷電機是否存在過熱等故障。溫度監測是電機狀態監測中常用的一種方法。電流監測技術:通過對電機的電流進行監測,可以判斷電機是否正常運行。例如,電流過高或過低可能意味著電機受阻或負載過重。聲音監測技術:通過采集電機的聲音信號,并對其進行分析和處理,可以判斷電機是否存在故障。聲音監測技術常用于電機的故障診斷和預測性維護。光學監測技術:利用光學傳感器或攝像頭等設備,對電機的運行狀態進行實時監測和分析。光學監測技術可以幫助設備操作員及時發現異常情況,例如電機的偏移、卡住或損壞等。 解決電機監測的難題需要結合先進的傳感技術、數據分析算法、通信技術以及專業的工程知識。南通功能監測控制策略
在實際工業環境中,存在許多環境噪聲,可能干擾電機監測系統的信號。需要采用高度靈敏的傳感器和濾波技術。降噪監測技術
電機狀態監測技術是一種綜合性的技術,需要綜合運用各種監測方法和手段,以實現對電機狀態的了解和掌握。通過電機狀態監測技術,可以及時發現并處理潛在問題,提高設備的可靠性和生產效率,降低維護成本,為企業創造更大的經濟效益。還有一些基于數學模型和人工智能的故障診斷方法,如基于神經網絡的故障診斷、基于支持向量機的故障診斷等。這些方法主要是利用電機的數學模型或歷史數據,結合機器學習、深度學習等人工智能技術,對電機的狀態進行估計和預測。電機狀態監測是確保電機正常運行和延長其使用壽命的關鍵技術之一。通過綜合運用各種監測方法和手段,可以及時發現并處理潛在問題,提高設備的可靠性和生產效率。同時,電機狀態監測技術還可以為設備的預測性維護和優化運行提供有力支持。降噪監測技術