低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數(shù)據(jù)信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關評價參數(shù)、模式及準則。如表征設備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學監(jiān)控系統(tǒng),輔以其他設備參數(shù),通過物聯(lián)網(wǎng)技術實現(xiàn)設備狀態(tài)的遠程感知,基于AI神經(jīng)網(wǎng)絡技術,計算并提取設備音頻特征,從而實現(xiàn)設備運行狀態(tài)實時評估與故障的早期識別。幫助企業(yè)用戶提升生產效率,保證生產安全,優(yōu)化生產決策。工業(yè)噪聲的監(jiān)測檢測可以減少對工人聽力的損害,提高工作效率和生活質量。上海研發(fā)監(jiān)測
作為工業(yè)領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產品號稱可以實現(xiàn)電機的預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據(jù)預處理、工業(yè)機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!常州性能監(jiān)測數(shù)據(jù)監(jiān)測結果的分析可以幫助我們了解產品的優(yōu)勢和不足之處。
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現(xiàn)為一些特征參量的變化,根據(jù)診斷需要,選擇有代表性的特征參量為該設備在線監(jiān)測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規(guī)的監(jiān)測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數(shù)據(jù)處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現(xiàn)代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監(jiān)測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發(fā)生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換等。
傳統(tǒng)方法通常無法自適應提取特征, 同時需要一定的離線數(shù)據(jù)訓練得到檢測模型, 但目標對象在線場景下采集到的數(shù)據(jù)有限, 且其數(shù)據(jù)分布與訓練數(shù)據(jù)的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數(shù)據(jù), 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數(shù)據(jù)微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統(tǒng)分析的故障診斷方法利用狀態(tài)空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統(tǒng)運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經(jīng)網(wǎng)絡已被成功應用于早期故障特征的自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量輔助數(shù)據(jù)進行模型訓練, 而歷史采集的輔助數(shù)據(jù)與目標對象數(shù)據(jù)可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發(fā)的狀態(tài)變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監(jiān)測中的應用仍存在較大的提升空間.監(jiān)測結果的反饋可以幫助我們改進產品的設計和功能。
預測性維護應運而生。其是以狀態(tài)為依據(jù)的維修,主要是對設備在運行中產生的二次效應(如振動、噪聲、沖擊脈沖、油樣成分、溫度等)進行連續(xù)在線的狀態(tài)監(jiān)測及數(shù)據(jù)分析,診斷并預測設備故障的發(fā)展趨勢,提前制定預測性維護計劃并實施檢維修的行為。
總體來看,狀態(tài)監(jiān)測和故障診斷是判斷預測性維護是否合理的根本所在,數(shù)據(jù)狀態(tài)的連續(xù)監(jiān)測和遠程傳輸上傳相對已經(jīng)比較成熟,而狀態(tài)預測和故障診斷主要還是依靠人工分析實現(xiàn),診斷分析人員通過趨勢?波形?頻譜等專業(yè)分析工具,結合傳動結構?機械部件參數(shù)等信息,實現(xiàn)設備故障的精細定位。其發(fā)展趨勢是將物聯(lián)網(wǎng)及人工智能技術引入狀態(tài)預測及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準確性。 工業(yè)監(jiān)測數(shù)據(jù)可以幫助企業(yè)進行市場分析和競爭策略制定。杭州變速箱監(jiān)測臺
盈蓓德智能科技秉承著專心、專注、專研的態(tài)度,力爭做好每一套系統(tǒng),服務好每一位客戶。上海研發(fā)監(jiān)測
針對刀具磨損狀態(tài)在實際生產加工過程中難以在線監(jiān)測這一問題,提出一種通過通信技術獲取機床內部數(shù)據(jù),對當前的刀具磨損狀態(tài)進行識別的方法。通過采集機床內部實時數(shù)據(jù)并將其與實際加工情景緊密結合,能直接反映當前的加工狀態(tài)。將卷積神經(jīng)網(wǎng)絡用于構建刀具磨損狀態(tài)識別模型,直接將采集到數(shù)據(jù)作為輸入,得到了和傳統(tǒng)方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現(xiàn)都符合預期。刀具磨損狀態(tài)識別的方法在投入使用時還有一些問題有待解決:①現(xiàn)有數(shù)據(jù)是在相同的加工條件下測得的,而實際加工過程中,加工參數(shù)以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數(shù)試驗,考慮加工參數(shù)對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據(jù)實時的信號以及已知的磨損狀態(tài),對模型進行實時更新,從而在實時監(jiān)測過程中實現(xiàn)自學習,不斷提升模型的精度和預測效果。上海研發(fā)監(jiān)測