基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規的監測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發生的故障類型。常用的信號變換方法有希爾伯特變換和小波變換等。監測結果的準確性對于決策的制定至關重要。南京監測設備
傳統維護模式中的故障后維護與定期維護將影響生產效率與產品質量,并大幅提高制造商的成本。隨著物聯網、大數據、云計算、機器學習與傳感器等技術的成熟,預測性維護技術應運而生。以各類如電機、軸承等設備為例,目前已發展到較為成熟的在線持續監測階段,來實現查看設備是否需要維護、安排維護時間來減少計劃性停產等,并能夠快速、有效的通過物聯網接入到整個網絡,將數據回傳至管理中心,來實現電機設備的預測性維護。電動機是機械加工中不可或缺的必備工具,電動機在運轉中常產生各種故障,為保證電動機運行安全,對電動機運行狀態進行在線監測尤為重要。以三相異步電動機為研究對象,采用傳感器獲取電動機運行中的重要參數(振動、噪聲、轉速及溫度等),由時/頻域分析及能量分析等方法提取電動機運行特征量,構成特征向量,采用BP神經網絡訓練的方法建立狀態識別模型,通過BP神經網絡模式識別方法,判斷電動機運行的狀態,在此基礎上,利用LabVIEW軟件構建可視化監測系統,將電動機運行參數及狀態實時顯示在可視化界面中,完成在線智能監測。南京監測設備工業監測設備可以幫助企業實現智能化管理。
智能船舶是指基于“網絡平臺”的信息技術應用,以“大數據”為基礎,通過數據分析和數據處理,實現運行船舶的智能感知、判斷分析和決策控制,從技術、設備、管理等多個層面保證船舶航行的安全和效率,大幅減少甚至杜絕人為或外部因素造成的各種事故。其主要目標就是安全、經濟、高效、環保。而智能機艙是通過綜合狀態監測系統所獲得的設備信息和數據,實現對機艙內機械設備的運行狀態、健康狀況進行分析和評估,進而完成設備操作輔助決策和維護保養計劃的綜合管控系統。它能及時地、準確地對多種異常狀態或故障狀態做出診斷,預防或消除故障,把故障損失降低到較低水平,同時對設備的運行進行必要的決策支持,提高設備運行的可靠性、安全性和有效性,也能確定設備的良好維護時間,降低設備全壽命周期費用,增加設備的穩定性。近日,盈蓓德成功交付了InsightlO智能監測系統,就是智能船舶中的智能機艙系統,這一創新技術將為船舶行業帶來全新的智能化管理體驗,標志著船舶行業智能化新篇章的開啟。InsightlO智能監測系統是盈蓓德經過長期研發和測試的成果,該系統能夠實時監測機艙設備的各項運行數據。
針對刀具磨損狀態在實際生產加工過程中難以在線監測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前加工狀態。將卷積神經網絡用于構建刀具磨損狀態識別模型,直接將采集到的數據作為輸入,得到了和傳統方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態,對模型進行實時更新,從而在實時監測過程中實現自學習,不斷提升模型的精度和預測效果。盈蓓德智能科技是一家多年致力于測試測量產品、系統及服務的技術企業。
從整體的網絡架構來看,智能振動噪聲監診子系統利用安裝在設備上傳感器節點獲取設備的健康狀態監測信號和運行參數數據,經網絡層集中上傳至設備健康監測物聯網綜合管理平臺,實現數據傳輸。應用層實現監測信號的分析?故障特征提取?故障診斷及預測功能,實現智能化管理?應用和服務。設備健康監測物聯網綜合管理平臺具有強大的數據采集分析處理?數據可視?設備運維?故障診斷?故障報警等功能。通過實時監測查看?統計?追溯,實現對其管轄設備的實時監測和運行維護,基于運行信息和檢修信息?自動生成設備管理報表,實現設備可靠性?故障數據?更換備件等信息統計,為維修方案提供依據。監測工作需要持續進行,以確保數據的實時性和準確性。紹興電機監測公司
工業噪聲的監測檢測可以減少對工人聽力的損害,提高工作效率和生活質量。南京監測設備
故障預測與健康管理是以工業監測數據為基礎,通過高等數學、數學優化、統計概率、信號處理、機器學習和統計學習等技術搭建模型算法,實現產品和裝備的狀態監測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。故障預測與健康管理是以工業監測數據為基礎,通過高等數學、數學優化、統計概率、信號處理、機器學習和統計學習等技術搭建模型算法,實現產品和裝備的狀態監測、故障診斷及壽命預測,為產品和裝備的正常運行保駕護航,從而提高其安全性和可靠性。近年來我們提出的標準化平方包絡和數學框架以及準算數均值比數學框架指引了稀疏測度構造的新方向,同時發現了大量與基尼指數、峭度、香農熵等具有等價性能的稀疏測度。基于標準化平方包絡和數學框架以及凸優化技術,提出了在線更新模型權重可解釋的機器學習算法,可以利用模型權重來實時確認故障特征頻率,解決了狀態監測與故障診斷領域傳統機器學習只能輸出狀態,而無法提供故障特征來確認輸出狀態的難題。南京監測設備