在預防性維護的應用中,振動是大型旋轉等設備即將發生故障的重要指標,一是在大型旋轉機械設備的所有故障中,振動問題出現的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監測和診斷。旋轉類設備的預防性維護需要重點監控振動量變化。其預測性診斷技術對于制造業、風電等的行業的運維具有非常重大的意義。通過設備振動等狀態的預測性維護,可以及時發現并解決系統及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度不必要增加會對部件產生有害的力,危及設備的使用壽命和質量。在這種情況下,則需要采用振動隔離技術來解決和干預,有效抑制振動和噪聲的危害,避免設備故障和流程關閉。監測結果的評估可以幫助我們調整營銷策略和推廣方案。無錫功能監測公司
如今電力系統中發電機的單機容量越大型發電機在電力生產中處于主力位置,同時大型發電機造價昂貴,結構復雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國今后很長一段時間內的缺電、用電緊張的狀況而言,發電機的年運行小時數目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監測與診斷,做到早期預警以防止事故的發生或擴大具有重要的現實意義。通常對發電機的“監測”與“診斷”在內容上并無明確的劃分界限,可以說監測數據和結果即為診斷的依據。監測利用各種傳感器在電機運行時對電機的狀態提取相關數據。故障診斷使用計算機及其相應智能軟件,根據傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態監測和故障診斷是一項工作的兩個部分,前者是后者的基礎,后者是前者的分析與綜合。電機狀態監測技術可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設備內部實際的運行狀況,合理安排檢修工作,實現所謂“預知”維修。這樣既可避免由于設備突然損壞,停止運行帶來的損失,又可充分發揮設備的作用。南京發動機監測技術工業產品質量的監測檢測是保證產品符合標準要求的重要手段,可以提高產品的競爭力和市場信譽。
故障診斷可以使系統在一定工作環境下根據狀態監測系統提供的信息來查明導致系統某種功能失調的原因或性質,判斷劣化發生的部位或部件,以及預測狀態劣化的發展趨勢等。
電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監測,電機的溫升與各種故障現象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。
電機作為工業世界的支柱,在發電、制造和運輸業等各機械領域發揮著至關重要的作用。電機*常見的應用場景如:泵、壓縮機、鼓風機、風扇、機床、起重機、輸送機和電動汽車等。全球產生的總電能的50%以上用于電機,感應電機消耗了約60%的工業電力。由于低成本、堅固耐用、功率重量比高以及對各種操作條件的適應性,感應電機在所有行業的部署中的應用范圍都穩步提升。感應電機的可靠性至關重要,以確保該后續流程工業的健康持續運行。然而,感應電機面臨的不可避免的熱應力、環境變化、機械應力、外部負載變化、電流偏差、潤滑不足和密封不良、多塵環境、制造缺陷和自然老化等因素。使得其不可避免的產生一些意外故障。這些故障若在其初級階段被忽視,極易導致災難性的電機故障和次生災害,如流程關閉及嚴重的人員傷亡,這就帶來巨大的經濟損失和負面社會效應。為了避免發生災難性電機故障的可能性,業界產生對開始退化的感應電機組件進行了早期狀態監測和故障診斷的需求。狀態監測可在其整個使用壽命期間對感應電機的各種部件進行持續評估。感應電機故障的早期診斷,對即將發生的故障提供足夠的警告,為企業提供基于狀態的維護和*短停機時間建議。通俗地說。工業監測系統可以實現遠程監控和管理,提高企業運營效率。
目前設備狀態監測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態機械動態特性劣化演變規律。設備由非故障運行狀態劣化為故障運行狀態,其機械動態特性通常有一個發展演變過程(2)提取設備運行狀態發展趨勢特征。在役設備往往具有復雜運行狀態,在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成冗余信息,進而構建預測模型。動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。可應用于風力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯網的動力裝備全生命周期監測與服務支持創新模式,提供了其生命周期的遠程監測診斷與維護等專業化服務。監測工作需要定期進行,以保持對市場的敏感度和洞察力。南通設備監測特點
監測結果的反饋可以幫助我們改進產品的質量和性能。無錫功能監測公司
作為工業領域的一種關鍵旋轉設備,對于終端用來說,關于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經有很多智能產品號稱可以實現電機預測性維護,但問題也非常多。1)傳感器安裝難。設備狀態監測需要振動、噪聲、溫度傳感器,通訊協議并不統一,自成體系,安裝、使用、維護成本高昂。2)技術成本高。工業場景設備類型多,運行工況復雜,預測性維護算法涉及數據預處理、工業機理、機器學習,技術要求很高。3)時間成本高。預測性維護要實現,前期需要大量歷史數據的支撐,數據采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離! 無錫功能監測公司