動力裝備全壽命周期監測診斷方面:實現了支持物聯網的智能信息采集與管理、全生命周期動態自適應監測、早期非線性故障特征提取。優化重構出綜合體現裝備運行工況及表現的新參數,提高異常狀態辨識的適應性與可靠性,基于運行過程信息反映裝備劣化趨勢與故障發展規律,來提高故障早期辨識能力。動力裝備全生命周期性能優化服務方面:提供了轉子全息動平衡快速響應與服務支持、以全息譜為失衡故障確診、動力裝備轉子和軸系平衡配重方案優化。基于物聯網和網絡化監測診斷將產品監測診斷與運行服務支持有機集成一體,在應用中實現動力裝備常見故障診斷準確率達80%以上。可應用于風力大電機、空壓機、氮壓機等大型動力裝備的集群化診斷領域。提供了基于物聯網的動力裝備全生命周期監測與服務支持創新模式,提供了其生命周期的遠程監測診斷與維護等專業化服務。盈蓓德科技順應行業發展方向,搭建一套基于旋轉類設備溫度,振動狀態監測、故障判斷和預測性維護系統。上海電力監測介紹
現代化生產企業為了極大限度地提高生產水平和經濟效益,不斷地向規模化和高技術技術含量發展,因此生產裝置趨向大型化、高速高效化、自動化和連續化,人們對設備的要求不僅是性能好,效率高,還要求在運行過程中少出故障,否則因故障停機帶來的損失是十分巨大的。國內外化工、石化、電力、鋼鐵和航空等部門,從許多大型設備故障和事故中逐漸認識到開展設備故障診斷的重要性。管理好用好這些大型設備,使其安全、可靠地運行,成為設備管理中的突出任務。對于單機連續運行的生產設備,停機損失巨大的大型機組和重大設備,不宜解體檢查的高精度設備以及發生故障后會引起公害的設備。傳統的事后和定期維修帶來的過剩維修或失修,使維修費用在生產成本中所占比重很大。狀態監測維修是在設備運行時,對它的各個主要部位產生的物理、化學信號進行狀態監測,掌握設備的技術狀態,對將要形成或已經形成的故障進行分析診斷,判定設備的劣化程度和部位,在故障產生前制訂預知性維修計劃,確定設備維修的內容和時間。因此狀態監測維修既能經常保持設備的完好狀態,又能充分利用零部位的使用壽命,從而延長大修間隔,縮短大修時間,減少故障停機損失。南京NVH監測系統供應商時間域、頻率域以及角度域的NVH分析方法,對汽車動力總成的各種故障進行實時識別、監測和診斷。
電機抖動是指電機在運行過程中發生的不正常震動,可能會導致機器故障和停機時間增加,進而影響生產效率和產品質量。常見的電機抖動原因包括軸承損壞、不平衡、軸向偏移、電機定子或轉子損傷等。為了監測大型電機設備的健康情況,可以采用以下方法:振動監測:通過振動傳感器安裝在電機上,實時監測電機振動情況,如果振動超過正常范圍,則可以發出警報并停機。溫度監測:通過溫度傳感器監測電機內部和外部的溫度變化,如果發現異常的溫度升高,可能表明電機存在故障。潤滑油監測:通過監測電機內部的潤滑油質量和油位,及時發現油中雜質和油位不足等問題,防止設備損壞。電流監測:通過電流傳感器監測電機的電流變化,可以檢測電機是否存在負載過重、不平衡等問題,及時采取措施。聲音監測:通過麥克風或聲音傳感器監測電機的聲音,可以判斷電機是否存在異響和雜音等異常情況,及時排除問題。以上方法可以結合使用,形成一個完整的電機健康監測系統,有效地預防和解決電機抖動等問題,提高設備的穩定性和可靠性。
工業設備的預測性維護的市場需求顯而易見,但是預防性維護想要產生業務、真正大規模發展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數采傳感器、設備等。這導致很多企業在考慮投入產出比時比較猶豫。其次是技術需要突破,目前大多數供應商只實現了設備狀態的監視,真正能實現故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現更好的應用,要在以下方面實現突破。實現基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產品國產化率,降低實施成本。電機的監測和故障預判系統助力實現工業設備數智化管理和預測性維護。
傳統方法通常無法自適應提取特征, 同時需要一定的離線數據訓練得到檢測模型, 但目標對象在線場景下采集到的數據有限, 且其數據分布與訓練數據的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數據, 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數據微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統分析的故障診斷方法利用狀態空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統運動方程等信息, 對于軸承運行來說, 這類信息通常不易獲知. 近年來, 深度神經網絡已被成功應用于早期故障特征的自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數據進行模型訓練, 而歷史采集的輔助數據與目標對象數據可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發的狀態變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監測中的應用仍存在較大的提升空間.電機監測系統可以預判電機故障,防止代價高昂的停機并提高設備性能。嘉興設備監測控制策略
盈蓓德科技開發的電機監測和故障預判系統,助力實現工業設備數智化管理和預測性維護。上海電力監測介紹
基于交流電機的特征量:通過故障機理分析可知,交流電機運行過程中,其故障與否必然表現為一些特征參量的變化,根據診斷需要,選擇有代表性的特征參量為該設備在線監測的被測信號,準確地提取這些故障特征量,這是故障診斷的關鍵。故障特征量,特別是反映早期故障征兆的信號往往比較弱,而相應的背景噪聲比較弱,常規的監測方法,因受傳感器的準確性、微處理器的速度、A/D轉換的分辨率與轉換速度等硬件條件的限制,以及一般的數據處理方式的不足,很難滿足提取這些特征量的要求,需要采用一些特殊的電工測量手段與信號處理方法。例如小波變換原理的應用。電機故障的現代分析方法:基于信號變換的診斷方法電機設備的許多故障信息是以調制的形式存在于所監測的電氣信號及振動信號之中,如果借助于某種變換對這些信號進行解調處理,就能方便地獲得故障特征信息,以確定電機設備所發生的故障類型。上海電力監測介紹