刀具監測主要采用人工檢測、離線檢測和在線檢測三種策略。人工檢查是指工人在加工過程中可以憑經驗檢查刀具的狀態;離線檢測是在加工前專門對刀具進行檢測,預測其壽命,看是否能勝任當前的加工;在線檢測又稱實時檢測,是在加工過程中對刀具進行實時檢測,并根據檢測結果做出相應的處理。目前刀具檢測的算法有很多,有的是利用理論計算刀具上應力的變化來判斷刀具的損傷.有的是利用時間序列分析來檢測刀具,有的是利用神經網絡技術來檢測刀具。還有的是利用小波變換理論和神經網絡技術來檢測刀具,但都是以理論為主。考慮到刀具的塑性損傷在數控加工中很少發生,磨損對數控加工安全性影響很小,并且可以通過離線檢測進行加工,通過在線檢測,可以判斷微裂紋在當前載荷條件下是否會擴展。如果有可能擴大,我們認為載 荷是危險的,通過減少刀具的進給量來減少刀具上的載荷,以保證刀具安全性。各種診斷技術集成起來形成的集成智能監測診斷系統成為當前電機設備故障診斷研究的熱點。溫州電力監測應用
隨著電力電子技術、自動化控制技術的不斷發展,電機在工業生產以及家用電器中得到了***的應用,在市場競爭中正逐步顯示自己的優勢。傳統的電機在線監測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數的方式進行數據的測量、記錄和分析,這不僅硬件冗余,系統雜亂,而且操作極為不便,更有甚者,讀數誤差大,測試結果不準確。有些場合需要進行電機多種參數的監測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統的監測方法要求監測人員具有較高技能和水平,但是由于人為誤差的不可避免,這種監測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態和故障。技術實現要素:本發明提出了一種電機在線監測裝置和方法,通過對扭矩、轉速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態的監測以及對過電壓、過電流、過熱進行報警停機,解決現有技術中監測參數不能定量分析以及無法更加準確、實時的掌握電機運行狀態和故障的技術問題。杭州電機監測設備設備的故障監測診斷技術是利用科學的檢測方法和現代化技術手段,對設備目前的運行狀態進行監測和排查。
常見的設備監測數據包含以下幾類:1.運行數據:包括設備的運轉時間、運轉速度、負載情況、溫度、壓力等參數。這些數據可以反映設備的運行狀態和性能表現,以便進行運行效率評估、健康狀況評估以及預測維護等。2.電氣數據:包括設備的電流、電壓、功率、電阻等參數。這些數據可以反映設備的電氣性能和電能消耗情況,以便進行能效評估、設備故障診斷等。3.振動數據:包括設備的振動幅值、頻率、相位等參數。數據可以反映設備的振動情況,以便進行故障診斷和預測維護等。4.聲音數據:包括設備的聲音頻率、聲音強度、聲音特征等參數。這些數據可以反映設備的聲學性能,以便進行故障診斷和預測維護等。5.圖像數據:包括設備的照片、視頻、紅外圖像等。這些數據可以反映設備的外觀、結構、熱特性等信息,以便進行故障診斷、安全檢查和維護計劃制定等。6.環境數據:包括設備周圍環境的溫度、濕度、氣壓、光照等參數。這些數據可以反映設備所處的環境條件,以便進行設備健康評估、預測維護等。
工業設備的預測性維護的市場需求顯而易見。但是預防性維護想要產生大的業務價值、真正大規模發展卻是遇到了兩個難題。首先項目實施成本過高,硬件設備大多依賴進口。比如數采傳感器、設備等。這導致很多企業在考慮投入產出比時比較猶豫。其次是技術需要突破,目前大多數供應商只實現了設備狀態的監視,真正能實現故障準確預測的落地案例寥寥無幾。供應商技術和能力還需要不斷升級。預防性維護要想實現更好的應用,要在以下方面實現突破。實現基于預測的維護,提升故障診斷及預測的準確率提高軟硬件產品國產化率,降低實施成本。基于人工智能算法的新型的電機故障預測系統,適用范圍廣,能在更多的工業場合應用。
電機馬達監控系統適用于石油、化工、電力、煤炭、冶金、造紙、水泥等行業,可以實時對低壓電動機的運行狀態進行監測,對電機各類故障進行監測并存儲故障信息,可以生成各類實時曲線(電壓曲線、電流曲線等),為電機節能提供依據,并可實現電機節能管理。系統特點:1、實時監測電機回路石化、電力、水泥等電機用量大戶,需要對電機進行實時監測,監測內容包括電機的電流、電壓、電能、頻率、電機狀態(起動、停止、報警、故障)等。在要求較高的場所還要對工藝參數進行監測,例如溫度、壓力等。本系統不僅可以監測電機電壓、電流還能做能耗統計,工藝參數監測,可以大幅提高企業自動化程度。2、集中監控,利于節能馬達監控系統對用電大戶電機進行實時能耗監測,監測到的數據可以作為節能依據,并可通過系統進行節能控制,利于電機節能應用。3、提高自動化水平.電機監控系統是應用電力自動化技術、計算機技術和信息傳輸技術,集保護、監測、控制、通信等功能于一體的綜合系統,電機智能監測和運維,其預測效果和工程造價還未達到市場接受程度。嘉興性能監測技術
盈蓓德科技開發的智能監測系統實現了對電動機(馬達)、減速機等旋轉設備關鍵參數監測、掌握設備運行狀態。溫州電力監測應用
針對刀具磨損狀態在實際生產加工過程中難以在線監測這一問題,提出一種通過通信技術獲取機床內部數據,對當前的刀具磨損狀態進行識別的方法。通過采集機床內部實時數據并將其與實際加工情景緊密結合,能直接反映當前的加工狀態。將卷積神經網絡用于構建刀具磨損狀態識別模型,直接將采集到的數據作為輸入,得到了和傳統方法精度近似的預測模型,模型在訓練集和在線驗證試驗中的表現都符合預期。刀具磨損狀態識別的方法在投入使用時還有一些問題有待解決:①現有數據是在相同的加工條件下測得的,而實際加工過程中,加工參數以及加工情景是不斷變化的,因此需要在下一步的研究中,進行變參數試驗,考慮加工參數對于刀具磨損的影響,并針對常用的一些加工場景,建立不同的模型庫。變換加工場景時,通過獲取當前場景,及時匹配相應的預測模型即可。②本研究中的模型是一個固定的模型。今后需要根據實時的信號以及已知的磨損狀態,對模型進行實時更新,從而在實時監測過程中實現自學習,不斷提升模型的精度和預測效果。溫州電力監測應用