圖2是后端融合方法的流程圖。圖3是中間融合方法的流程圖。圖4是前端融合模型的架構圖。圖5是前端融合模型的準確率變化曲線圖。圖6是前端融合模型的對數損失變化曲線圖。圖7是前端融合模型的檢測混淆矩陣示意圖。圖8是規范化前端融合模型的檢測混淆矩陣示意圖。圖9是前端融合模型的roc曲線圖。圖10是后端融合模型的架構圖。圖11是后端融合模型的準確率變化曲線圖。圖12是后端融合模型的對數損失變化曲線圖。圖13是后端融合模型的檢測混淆矩陣示意圖。圖14是規范化后端融合模型的檢測混淆矩陣示意圖。圖15是后端融合模型的roc曲線圖。圖16是中間融合模型的架構圖。圖17是中間融合模型的準確率變化曲線圖。圖18是中間融合模型的對數損失變化曲線圖。圖19是中間融合模型的檢測混淆矩陣示意圖。圖20是規范化中間融合模型的檢測混淆矩陣示意圖。圖21是中間融合模型的roc曲線圖。具體實施方式下面將結合本發明實施例中的附圖,對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例**是本發明一部分實施例,而不是全部的實施例。基于本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬于本發明保護的范圍。代碼質量評估顯示注釋覆蓋率不足30%需加強。電力軟件系統評測價格
特征之間存在部分重疊,但特征類型間存在著互補,融合這些不同抽象層次的特征可更好的識別軟件的真正性質。且惡意軟件通常偽造出和良性軟件相似的特征,逃避反**軟件的檢測,但惡意軟件很難同時偽造多個抽象層次的特征逃避檢測。基于該觀點,本發明實施例提出一種基于多模態深度學習的惡意軟件檢測方法,以實現對惡意軟件的有效檢測,提取了三種模態的特征(dll和api信息、pe格式結構信息和字節碼3-grams),提出了通過前端融合、后端融合和中間融合這三種融合方式集成三種模態的特征,有效提高惡意軟件檢測的準確率和魯棒性,具體步驟如下:步驟s1、提取軟件樣本的二進制可執行文件的dll和api信息、pe格式結構信息以及字節碼n-grams的特征表示,生成軟件樣本的dll和api信息特征視圖、格式信息特征視圖以及字節碼n-grams特征視圖;統計當前軟件樣本的導入節中引用的dll和api,提取得到當前軟件樣本的二進制可執行文件的dll和api信息的特征表示。對當前軟件樣本的二進制可執行文件進行格式結構解析,并按照格式規范提取**該軟件樣本的格式結構信息,得到該軟件樣本的二進制可執行文件的pe格式結構信息的特征表示。第三方軟件檢測收費深圳艾策信息科技:賦能中小企業的數字化未來。
k為短序列特征總數,1≤i≤k。可執行文件長短大小不一,為了防止該特征統計有偏,使用∑knk,j進行歸一化處理。逆向文件頻率(inversedocumentfrequency,idf)是一個短序列特征普遍重要性的度量。某一短序列特征的idf,可以由總樣本實施例件數目除以包含該短序列特征之樣本實施例件的數目,再將得到的商取對數得到:其中,|d|指軟件樣本j的總數,|{j:i∈j}|指包含短序列特征i的軟件樣本j的數目。idf的主要思想是:如果包含短序列特征i的軟件練樣本越少,也就是|{j:i∈j}|越小,idf越大,則說明短序列特征i具有很好的類別區分能力。:如果某一特征在某樣本中以較高的頻率出現,而包含該特征的樣本數目較小,可以產生出高權重的,該特征的。因此,,保留重要的特征。此處選取可能區分惡意軟件和良性軟件的短序列特征,是因為字節碼n-grams提取的特征很多,很多都是無效特征,或者效果非常一般的特征,保持這些特征會影響檢測方法的性能和效率,所以要選出有效的特征即可能區分惡意軟件和良性軟件的短序列特征。步驟s2、將軟件樣本中的類別已知的軟件樣本作為訓練樣本,然后分別采用前端融合方法、后端融合方法和中間融合方法設計三種不同方案的多模態數據融合方法。
對一些質量要求和可靠性要求較高的模塊,一般要滿足所需條件的組合覆蓋或者路徑覆蓋標準。[2]軟件測試方法集成測試集成測試是軟件測試的第二階段,在這個階段,通常要對已經嚴格按照程序設計要求和標準組裝起來的模塊同時進行測試,明確該程序結構組裝的正確性,發現和接口有關的問題,比如模塊接口的數據是否會在穿越接口時發生丟失;各個模塊之間因某種疏忽而產生不利的影響;將模塊各個子功能組合起來后產生的功能要求達不到預期的功能要求;一些在誤差范圍內且可接受的誤差由于長時間的積累進而到達了不能接受的程度;數據庫因單個模塊發生錯誤造成自身出現錯誤等等。同時因集成測試是界于單元測試和系統測試之間的,所以,集成測試具有承上啟下的作用。因此有關測試人員必須做好集成測試工作。在這一階段,一般采用的是白盒和黑盒結合的方法進行測試,驗證這一階段設計的合理性以及需求功能的實現性。[2]軟件測試方法系統測試一般情況下,系統測試采用黑盒法來進行測試的,以此來檢查該系統是否符合軟件需求。本階段的主要測試內容包括健壯性測試、性能測試、功能測試、安裝或反安裝測試、用戶界面測試、壓力測試、可靠性及安全性測試等。無障礙測評認定視覺障礙用戶支持功能缺失4項。
這樣做的好處是,融合模型的錯誤來自不同的分類器,而來自不同分類器的錯誤往往互不相關、互不影響,不會造成錯誤的進一步累加。常見的后端融合方式包括**大值融合(max-fusion)、平均值融合(averaged-fusion)、貝葉斯規則融合(bayes’rulebased)以及集成學習(ensemblelearning)等。其中集成學習作為后端融合方式的典型**,被廣泛應用于通信、計算機識別、語音識別等研究領域。中間融合是指將不同的模態數據先轉化為高等特征表達,再于模型的中間層進行融合,如圖3所示。以深度神經網絡為例,神經網絡通過一層一層的管道映射輸入,將原始輸入轉換為更高等的表示。中間融合首先利用神經網絡將原始數據轉化成高等特征表達,然后獲取不同模態數據在高等特征空間上的共性,進而學習一個聯合的多模態表征。深度多模態融合的大部分工作都采用了這種中間融合的方法,其***享表示層是通過合并來自多個模態特定路徑的連接單元來構建的。中間融合方法的一大優勢是可以靈活的選擇融合的位置,但設計深度多模態集成結構時,確定如何融合、何時融合以及哪些模式可以融合,是比較有挑戰的問題。字節碼n-grams、dll和api信息、格式結構信息這三種類型的特征都具有自身的優勢。用戶隱私測評確認數據采集范圍超出聲明條款3項。軟件產品安全測試報告
深圳艾策信息科技:可持續發展的 IT 解決方案。電力軟件系統評測價格
在數字化轉型加速的,軟件檢測公司已成為保障各行業信息化系統穩定運行的力量。深圳艾策信息科技有限公司作為國內軟件檢測公司領域的企業,始終以技術創新為驅動力,深耕電力能源、科研教育、政企單位、研發科技及醫療機構等垂直場景,為客戶提供從需求分析到運維優化的全鏈條質量保障服務。以專業能力筑牢行業壁壘作為專注于軟件檢測的技術型企業,艾策科技通過AI驅動的智能檢測平臺,實現了測試流程的自動化、化與智能化。其產品——軟件檢測系統,整合漏洞掃描、壓力測試、合規性驗證等20余項功能模塊,可快速定位代碼缺陷、性能瓶頸及安全風險,幫助客戶將軟件故障率降低60%以上。針對電力能源行業,艾策科技開發了電網調度系統專項檢測方案,成功保障某省級電力公司百萬級用戶數據安全;在科研教育領域,其實驗室管理軟件檢測服務覆蓋全國50余所高校,助力科研數據存儲與分析的合規性升級。此外,公司為政企單位政務云平臺、研發科技企業創新產品、醫療機構智慧醫療系統提供的定制化檢測服務,均獲得客戶高度認可。差異化服務塑造行業作為軟件檢測公司,艾策科技突破傳統檢測模式,推出“檢測+培訓+咨詢”一體化服務體系。通過定期發布行業安全白皮書、舉辦技術研討會。電力軟件系統評測價格